Search

Search Results

Dryad Logo
Arbuthnott, Devin; Agrawal, Aneil F.; Rundle, Howard D. 2015-01-31 The prevalence of sexual conflict in nature, as well as the supposedly arbitrary direction of the resulting coevolutionary trajectories, suggests that it may be an important driver of phenotypic divergence even in a constant environment. However, natural selection has long been central to the operation of sexual conflict within populations and may therefore constrain or otherwise direct divergence among populations. Ecological context may therefore matter with respect to the diversification of traits involved in sexual conflict, and if natural selection is sufficiently strong, such traits may evolve in correlation with environment, generating a pattern of ecologically-dependent parallel evolution. In this study we assess among-population divergence both within and between environments for several traits involved in sexual conflict. Using eight replicate populations of Drosophila melanogaster from a long-term evolution experiment, we measured remating rates and subsequent offspring production of females when housed with two separate males in sequence. We found no evidence of any variation in male reproductive traits (offense or defense). However, the propensity of females to remate diverged significantly among the eight populations with no evidence of any environmental effect, consistent with sexual conflict promoting diversification even in the absence of ecological differences. On the other hand, females adapted to one environment (ethanol) tended to produce a higher proportion of offspring sired by their first mate as compared to those adapted to the other (cadmium) environment, suggesting ecologically-based divergence of this conflict phenotype. Because we find evidence for both stochastic population divergence operating outside of an ecological context and environment-dependent divergence of traits under sexual conflict, the interaction of these two processes is an important topic for future work.
Dryad Logo
Arbuthnott, Devin; Whitlock, Michael C. 2018-07-05 A common intuition among evolutionary biologists and ecologists is that environmental stress will increase the strength of selection against deleterious alleles and among alternate genotypes. However, the strength of selection is determined by the relative fitness differences among genotypes, and there is no theoretical reason why these differences should be exaggerated as mean fitness decreases. We update a recent review of the empirical results pertaining to environmental stress and the strength of selection and find that there is no overall trend towards increased selection under stress. The majority of past studies measure the strength of selection by quantifying the decrease in fitness imposed by single or multiple mutations in different environments. However, selection rarely acts on one locus independently, and the strength of selection will be determined by variation across the whole genome. We used 20 inbred lines of Drosophila melanogaster to make repeated fitness measurements of the same genotypes in four different environments. This framework allowed us to determine the variation in fitness attributable to genotype across stressful environments and to calculate the opportunity for selection among these genotypes in each stress. While we found significant decreases in mean fitness in our stressful environments, we did not find any significant differences in the strength of selection among any of the four measured environments. Therefore, in agreement with our updated review, we find no evidence for the oft-cited verbal model that stress increases the strength of selection.
Dryad Logo
Dryad
Arbuthnott, Devin; Rundle, Howard D. 2012-01-19 The effects of sexual selection on population mean fitness are unclear and a subject of debate. Recent models propose that, because reproductive success may be condition-dependent, much of the genome may be a target of sexual selection. Under this scenario, mutations that reduce health, and thus non-sexual fitness, may also be deleterious with respect to reproductive success, meaning that sexual selection may contribute to the purging of deleterious alleles. We tested this hypothesis directly by subjecting replicate Drosophila melanogaster populations to two treatments that altered the opportunity for sexual selection and then tracked changes in the frequency of six separate deleterious alleles with recessive and visible phenotypic effects. While natural selection acted to decrease the frequency of all six mutations, the addition of sexual selection did not aid in the purging of any of them, and for three of them appears to have hampered it. Courtship and mating have harmful effects in this species and mate choice assays showed that males directed more courtship and mating behavior towards wild-type over mutant females, providing a likely explanation for sexual selection’s cost. Whether this cost extends to other mutations (e.g., those lacking visible phenotypic effects) is an important topic for future research.

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.