Search

Search Results

Dryad Logo
Dryad
Pec, Gregory J.; Karst, Justine; Sywenky, Alexandra N.; Cigan, Paul W.; Erbilgin, Nadir; Simard, Suzanne W.; Cahill Jr., James F.; Cahill, James F. 2016-03-26 The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.
Dryad Logo
Dryad
McNickle, Gordon G.; Deyholos, Michael K.; Cahill Jr., James F.; Cahill, James F. 2016-06-23 The spatial arrangement of nutrients and neighbours in soil influences plant growth and reproduction. Plants often respond to such stimuli through plasticity in root proliferation (root mass per soil volume), or the breadth of their root system. Here, we asked how plants adjust nutrient foraging strategies when grown alone or with neighbours. We asked (i) Does root proliferation into nutrient-rich patches when plants are grown alone predict root proliferation when plants are grown with neighbours? (ii) What factors (nutrients or neighbours) best predict the probability of root placement at different soil locations? (iii) How does the spatial distribution of nutrients alter the degree to which neighbours suppress plant growth? To answer these questions, we grew four grassland species either as individual plants or in competition, in patchy or patch-free soil, in a factorial design. We used genomic DNA to identify the spatial distribution of roots of each species when plants were grown in mixtures. The root foraging behaviour of individuals grown alone did not consistently predict behaviour in mixture. Specifically, (i) the behaviour of individually grown plants predicted behaviour of competing plants inside patches, but not in background soil. We observed over-proliferation of roots in background soil relative to what was expected from plants grown alone. (ii) Neighbours were consistently the most important variable for predicting the placement of roots in soil and caused either an increase in root system breadth, or no change relative to alone. (iii) If a species experienced growth suppression when grown in competition, individuals experienced this more severely in patchy soil compared to patch-free soil. Synthesis. Game theoretic models have predicted that under interspecific competition, over-proliferation of roots in the presence of neighbours might occur for some species but not others. Our data are consistent with these predictions but more work is needed. Nutrient foraging studies have primarily focused on plants grown alone or assumed that plants do not respond separately to neighbours and nutrients. Our data call these practices into question and contribute to a growing understanding that plants integrate information about both nutrients and neighbours when placing roots in soil.
Dryad Logo
Dryad
Chagnon, Pierre-Luc; Brown, Charlotte; Stotz, Gisela C.; Cahill, James F. 2020-04-16 When placing roots in the soil, plants integrate information about soil nutrients, plant neighbours and beneficial/detrimental soil organisms. While the fine-scale spatial heterogeneity in soil nutrients and plant neighbours have been described previously, virtually nothing is known about the spatial structure in soil biotic quality (measured here as a soil Biota-Induced plant Growth Response, or BIGR), or its correlation with nutrients or neighbours. Such correlations could imply trade-offs in root placement decisions. Theory would predict that soil BIGR is (1) negatively related to soil fertility and (2) associated with plant community structure, such that plants influence soil biota (and vice versa) through plant-soil feedbacks. We would also expect that since plants have species-specific impacts on soil organisms, spatially homogeneous plant communities should also homogenize soil BIGR. Here, we test these hypotheses in a semiarid grassland by (1) characterizing the spatial structure of soil BIGR at a scale experienced by an individual plant and (2) correlating it to soil abiotic properties and plant community structure. We do so in two types of plant communities: (1) low-diversity patches dominated by an invasive grass (Bromus inermis Leyss.) and (2) patches covered mostly by native vegetation, with the expectation that dominance by Bromus would homogenize soil BIGR. Soil BIGR was spatially heterogeneous, but not autocorrelated. This was true in both vegetation types (Bromus-invaded vs. native patches). Conversely, soil abiotic properties and plant community structure were frequently spatially autocorrelated at similar scales. Also, contrary to many studies, we found a positive correlation between soil BIGR and soil fertility. Soil BIGR was also associated with plant community structure. Synthesis. The positive correlation between soil BIGR and some soil nutrient levels suggests that plants don't necessarily trade-off between foraging for nutrients vs. biotic interactions: nutritional cues could rather indicate the presence of beneficial soil biota. Moreover, the spatial structure in plant communities, coupled with their correlation with soil BIGR, jointly suggest that plant-soil feedbacks operate at local scales in the field: this has been identified in modelling studies as an important driver of plant coexistence.

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.