Search

Search Results

University of Ottawa Dataverse Logo
Borealis
Van der Kolk, Jarno; Darveau, Peter; Tayler, Felicity 2024-10-10 Nous verrons dans ce tutoriel comment détecter des modèles à l’aide du classificateur bayésien naïf, une technique d’apprentissage-machine efficace pour détecter certains modèles et prévoir les dépendances au sein de votre jeu de données. Nous réexaminerons dans la première partie de ce tutoriel le jeu de données Iris utilisé dans le tutoriel précédent pour apprendre à utiliser le classificateur bayésien naïf. Nous appliquerons par la suite vos nouvelles connaissances pour déceler les pourriels parmi vos messages textes (SMS), de manière à identifier les messages que vous ne désirerez pas lire. Le jeu de données que nous utiliserons s’agit d’un jeu de données de source libre du Référentiel d’apprentissage-machine UCI. Nous examinerons ensuite la classification multi-étiquettes via le jeu de données CMU que nous avons utilisé antérieurement pour le classificateur des plus proches voisins. Enfin, nous vous donnerons un exemple d’utilisation non aboutie du classificateur bayésien et vous expliquerons pourquoi cela n’a pas fonctionné. <br/><br/>The tutorial revisits the Iris flower dataset to introduce the basic steps of working with the Naive Bayes Classifier. It then applies the classifier to detect spam in SMS messages using the SMS Spam collection dataset from the UCI Machine Learning Repository, and performs multi-label classification using the CMU book dataset. The tutorial also presents a scenario where the Naive Bayes Classifier fails, providing an explanation for the failure. By the end of this tutorial, participants will have a solid understanding of the Naive Bayes classifier, be able to split data into training and testing sets, make predictions, evaluate classifier performance, identify spam, classify books, train a Gaussian Naive Bayes classifier for single or multiple labels, and utilize imputation techniques for handling missing data.
University of Ottawa Dataverse Logo
Borealis
Van der Kolk, Jarno; Darveau, Peter; Tayler, Felicity 2024-10-10 <p>Ce tutoriel est conçu pour optimiser la préparation des données pour l'apprentissage automatique, avec un focus spécifique sur la prédiction des schémas de circulation des vélos en fonction des conditions météorologiques. Il comprend un résumé des objectifs d'apprentissage, une section spécifique qui décrit les exigences nécessaires pour compléter le tutoriel, et une section sur les pratiques recommandées pour la gestion des données de recherche (GDR). Le tutoriel utilise la régression linéaire, un modèle d'apprentissage automatique simple, pour faire des prédictions basées sur les données d'entrée. Les données proviennent des données de comptage des vélos d'Ottawa et des données météorologiques historiques.</p> <p>This tutorial is designed to optimize data preparation for machine learning, with a specific focus on predicting bike traffic patterns based on weather conditions. It includes a summary of the learning goals, a specific section that outlines the necessary requirements for completing the tutorial, and a section on the recommended practices for Research Data Management (RDM). The tutorial employs Linear Regression, a straightforward machine learning model, to make predictions based on the input data. The data is sourced from Ottawa’s bike count data and historical weather data.</p>
University of Ottawa Dataverse Logo
Borealis
Van der Kolk, Jarno; Darveau, Peter; Tayler, Felicity 2024-10-10 Nous verrons dans ce tutoriel comment un algorithme d’arbre décisionnel permet de faire des prédictions. Ce tutoriel comporte trois carnets, chacun traitant d’une application différente des arbres décisionnels et de l’algorithme connexe de forêt aléatoire. Une forêt aléatoire est en fait un regroupement d’arbres décisionnels. <br></br> Dans le Carnet 1 - Arbres de décision, nous analyserons un jeu de données relatives aux iris, un genre de fleur regroupant environ 300 espèces de plantes de la famille des iridacées, très populaires dans les jardins, peu importe la zone thermique. Il s’agit de plusieurs espèces végétales dont l’identification manuelle prendrait beaucoup de temps. Nous souhaiterions donc générer un modèle qui nous aidera à prédire la classe à laquelle une iris appartient, en fonction de ses caractéristiques. <br></br> Dans le Carnet 2, nous élargirons le modèle d’arbre décisionnel au modèle de forêt aléatoire, qui regroupe en fait plusieurs arbres décisionnels traitant différents blocs de données. Le modèle cumule les résultats des différents arbres pour faire des prévisions plus précises, le résultat généré par la forêt aléatoire correspondant à la classe sélectionnée par le plus grand nombre d’arbres décisionnels. <br></br> Dans le carnet 3 nous verrons dans ce tutoriel comment les classificateurs à forêt aléatoire peuvent améliorer les prédictions face à des jeux de données bruitées alors que de simples modèles d’apprentissage-machine, comme celui de régression linéaire, ne sont pas à la hauteur. Comme jeu de données bruitées, nous utiliserons le jeu de données épurées dont nous nous sommes servis pour le tout premier tutoriel sur la préparation de données à des fins d’apprentissage-machine. <br><br><b>This machine learning training</b> explores the dual nature of Decision Trees, demonstrating a fascinating interplay between human intuition and mathematical optimization. It delves into how decision trees use simple, hierarchical branching based on key features, mirroring how our minds categorize objects using decisive traits. The training comprises three notebooks, each focusing on distinct applications of the Decision Tree and its associated Random Forest algorithm.
University of Ottawa Dataverse Logo
Borealis
Van der Kolk, Jarno; Darveau, Peter; Tayler, Felicity 2024-10-10 This machine learning training explores the power and versatility of Support Vector Machines (SVMs), a class of models that employ mathematical optimization to find maximum margin hyperplanes for classification. The training comprises four notebooks: Regularization, Kernels, Deeper Understanding, and Noise Reduction.
University of Ottawa Dataverse Logo
Borealis
Van der Kolk, Jarno; Darveau, Peter; Tayler, Felicity 2024-10-25 Cette série de tutoriels entend combler trois lacunes au niveau de la compréhension de l’IA et des méthodologies d’apprentissage-machine : <li>Proposer une introduction aux modèles d’intelligence artificielle et d’apprentissage-machine.</li> <li>Préparer les données requises par ces modèles.</li> <li>Intégrer les pratiques de gestion des données de recherche (GDR) aux méthodologies fondées sur l’IA et l’apprentissage-machine</li> <br></br> This tutorial series addresses three key gaps in understanding AI and machine learning (ML) methodologies: <li> Providing an introduction to AI and ML models,</li> <li>Preparing data for these models, and</li> <li>Incorporating research data management (RDM) practices into AI and ML-enabled methodologies.</li>

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.