Search

Search Results

Dryad Logo
Dryad
Stothart, Mason; Greuel, Ruth; Gavriliuc, Stefan; Henry, Astrid; Wilson, Alastair; McLoughlin, Philip; Poissant, Jocelyn 2020-11-20 <p>Studies of microbiome variation in wildlife often emphasize host physiology and diet as proximate selective pressures acting on host-associated microbiota. In contrast, microbial dispersal and ecological drift are more rarely considered. Using amplicon sequencing, we characterized the bacterial microbiome of adult female (<i>n</i> = 86) Sable Island horses (Nova Scotia, Canada) as part of a detailed individual-based study of this feral population. Using data on sampling date, horse location, age, parental status, and local habitat variables, we contrasted the ability of spatiotemporal, life history, and environmental factors to explain microbiome diversity among Sable Island horses. We extended inferences made from these analyses with both phylogeny-informed and phylogeny-independent null modeling approaches to identify deviations from stochastic expectations. Phylogeny-informed diversity measures were correlated with spatial and local habitat variables, but null modelling results suggested that heterogeneity in ecological drift, rather than differential selective pressures acting on the microbiome, was responsible for these correlations. Conversely, phylogeny-independent diversity measures were best explained by host spatial and social structure, suggesting that taxonomic composition of the microbiome was shaped most strongly by bacterial dispersal. Parental status was important but correlated with measures of β-dispersion rather than β-diversity (mares without foals had lower alpha diversity and more variable microbiomes than mares with foals). Our results suggest that between host microbiome variation within the Sable Island horse population is driven more strongly by bacterial dispersal and ecological drift than by differential selective pressures. These results emphasize the need to consider alternative ecological processes in the study of microbiomes.</p> https://creativecommons.org/publicdomain/zero/1.0/
Dryad Logo
Dryad
Gavriliuc, Stefan; Reza, Salman; Jeong, Chanwoori; McLoughlin, Philip; Poissant, Jocelyn 2022-04-19 <p>The development of high-throughput sequencing has prompted a transition in wildlife genetics from using microsatellites toward sets of Single Nucleotide Polymorphisms (SNPs). However, genotyping large numbers of targeted SNPs using non-invasive samples remains challenging due to relatively large DNA input requirements. Recently, target enrichment has emerged as a promising approach requiring little template DNA. We assessed the efficacy of Tecan Genomics’ Allegro Targeted Genotyping (ATG) for generating genome-wide SNP data in feral horses using DNA isolated from fecal swabs. Total and host-specific DNA were quantified for 989 samples collected as part of a long-term individual-based study of feral horses on Sable Island, Nova Scotia, Canada, using dsDNA fluorescence and a host-specific qPCR assay, respectively. Forty-eight samples representing 44 individuals containing at least 10ng of host DNA (ATG’s recommended minimum input) were genotyped using a custom multiplex panel targeting 279 SNPs. Genotyping accuracy and consistency were assessed by contrasting ATG genotypes with those obtained from the same individuals with SNP microarrays, and from multiple samples from the same horse, respectively. 62% of swabs yielded the minimum recommended amount of host DNA for ATG. Ignoring samples that failed to amplify, ATG recovered an average of 86.7% targeted sites per sample, while genotype concordance between ATG and SNP microarrays was 98.5%. The repeatability of genotypes from the same individual approached unity with an average of 99.9%. This study demonstrates the suitability of ATG for genome-wide, non-invasive targeted SNP genotyping, and will facilitate further ecological and conservation genetics research in equids and related species.</p>

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.