Search

Search Results

University of Victoria Dataverse Logo
Borealis
Gleeson, Tom; Mohan, Chinchu; Famiglietti, James S; Virkki, Vili; Kummu, Matti; Porkka, Miina; Wang-Erlandsson, Lan; Huggins, Xander; Gerten, Dieter; Jähnig, Sonja C 2022-07-12 The freshwater ecosystems all over the world are degrading, such that maintaining environmental flow (EF) in river networks is critical to their preservation. The relationship between streamflow alterations and, respectively, EF violations, and freshwater biodiversity is well established at the scale of stream reaches or small basins (~<100 km²). However, it is unclear if this relationship is robust at larger scales even though there are large-scale initiatives to legalize the EF requirement and EFs have been used in assessing a planetary boundary for freshwater. Therefore, this study intends to evaluate the relationship between EF violation and freshwater biodiversity at large basin scale (median area = 19,600 km2), globally-aggregated scales, and at freshwater ecoregions, and test the prevailing assumption of scalability of this relationship. Four EF violation indices (severity, frequency, the probability to shift to violated state, and probability to stay violated) and nine independent freshwater biodiversity indicators (calculated from observed biota data except one empirically derived from streamflow deviation) were used for correlation analysis. EF violations showed an inverse relationship with the streamflow-derived biodiversity indicator (MSAhy) at the level 5 HydroBASIN scale. However, no statistically significant negative relationship between environmental flows and freshwater biodiversity was found at the global or ecoregion scale except between the streamflow-derived biodiversity indicator (MSAhy) and all EF violation indices. While our results thus suggest that streamflow and EF may not be the main determinants of freshwater biodiversity, they do not preclude the existence of relationships with more holistic EF methods (e.g. including water temperature, water quality, intermittency, connectivity, etc.) or with other biodiversity data or metrics.

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.