Search

Search Results

Dryad Logo
Wang, Ao; Singh, Amardeep; Huang, Yuheng; Agrawal, Aneil F. 2019-02-28 Populations vary in their degree of ecological specialization. An intuitive, but often untested, hypothesis is that populations evolving under greater environmental heterogeneity will evolve to be less specialized. How important is environmental heterogeneity in explaining among-population variation in specialization? We assessed juvenile viability of 20 Drosophila melanogaster populations evolving under one of four regimes: (i) a salt-enriched environment, (ii) a cadmium-enriched environment, (iii) a temporally varying environment, and (iv) a spatially varying environment. Juvenile viability was tested in both the original selective environments and a set of novel environments. In both the original and novel environments, populations from the constant cadmium regime had the lowest average viability and the highest variance in viability across environments but populations from the other three regimes were similar. Our results suggest that variation in specialization among these populations is most simply explained as a pleiotropic by-product of adaptation to specific environments rather than resulting from a history of exposure to environmental heterogeneity.
Dryad Logo
Huang, Yuheng; Stinchcombe, John R.; Agrawal, Aneil F. 2015-09-07 Heterogeneous environments are typically expected to maintain more genetic variation in fitness within populations than homogeneous environments. However, the accuracy of this claim depends on the form of heterogeneity as well as the genetic basis of fitness traits and how similar the assay environment is to the environment of past selection. Here we measure quantitative genetic variance for three traits important for fitness using replicated experimental populations of Drosophila melanogaster evolving under four selective regimes: constant salt-enriched medium (Salt), constant cadmium-enriched medium (Cad), and two heterogeneous regimes that vary either temporally (Temp) or spatially (Spatial). As theory predicts, we found that Spatial populations tend to harbor more genetic variation than Temp populations or those maintained in a constant environment that is the same as the assay environment. Contrary to expectation, Salt populations tend to have more genetic variation than Cad populations in both assay environments. We discuss the patterns for quantitative genetic (QG) variances across regimes in relation to previously reported data on genome-wide sequence diversity. For some traits, the QG patterns are similar to the diversity patterns of ecological selected SNPs whereas the QG patterns for some other traits resembled that of neutral SNPs.

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.