Search

Search Results

Dryad Logo
Dryad
Prentice, Melanie B.; Bowman, Jeff; Khidas, Kamal; Koen, Erin L.; Row, Jeffrey R.; Murray, Dennis L.; Wilson, Paul J. 2018-04-14 Island populations have long been important for understanding the dynamics and mechanisms of evolution in natural systems. While genetic drift is often strong on islands due to founder events and population bottlenecks, the strength of selection can also be strong enough to counteract the effects of drift. Here, we used several analyses to identify the roles of genetic drift and selection on genetic differentiation and diversity of Canada lynx (Lynx canadensis) across eastern Canada, including the islands of Cape Breton and Newfoundland. Specifically, we assessed whether we could identify a genetic component to the observed morphological differentiation that has been reported across insular and mainland lynx. We used a dinucleotide repeat within the promoter region of a functional gene that has been linked to mammalian body size, insulin-like growth factor-1 (IGF-1). We found high genetic differentiation at neutral molecular markers but convergence of allele frequencies at the IGF-1 locus. Thus, we showed that while genetic drift has influenced the observed genetic structure of lynx at neutral molecular markers, natural selection has also played a role in the observed patterns of genetic diversity at the IGF-1 locus of insular lynx.
Dryad Logo
Dryad
Prentice, Melanie; Bowman, Jeff; Murray, Dennis; Khidas, Kamal; Wilson, Paul 2020-11-20 Clock genes exhibit substantial control over gene expression and ultimately life-histories using external cues such as photoperiod, and are thus likely to be critical for adaptation to shifting seasonal conditions and novel environments as species redistribute their ranges under climate change. Coding trinucleotide repeats (cTNRs) are found within several clock genes, and may be interesting targets of selection due to their containment within exonic regions and elevated mutation rates. Here, we conduct inter-specific characterization of the NR1D1 cTNR between Canada lynx and bobcat, and intra-specific spatial and environmental association analyses of neutral microsatellites and our functional cTNR marker, to investigate the role of selection on this locus in Canada lynx. We report signatures of divergent selection between lynx and bobcat, with the potential for hybrid-mediated gene flow in the area of range overlap. We also provide evidence that this locus is under selection across Canada lynx in eastern Canada, with both spatial and environmental variables significantly contributing to the explained variation, after controlling for neutral population structure. These results suggest that cTNRs may play an important role in the generation of functional diversity within some mammal species, and allow for contemporary rates of adaptation in wild populations in response to environmental change. We encourage continued investment into the study of cTNR markers to better understand their broader relevance to the evolution and adaptation of mammals.

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.