Search

Search Results

Dryad Logo
Peers, Michael; Majchrzak, Yasmine; Menzies, Allyson; Studd, Emily; Bastille-Rousseau, Guillaume; Boonstra, Rudy; Humphries, Murray; Jung, Thomas; Kenney, Alice; Krebs, Charles; Murray, Dennis; Boutin, Stan 2021-06-16 <p style="text-indent:36.0pt;">Canada lynx (<i>Lynx canadensis</i>) and snowshoe hares (<i>Lepus americanus</i>) form a keystone predator-prey cycle that has large impacts on the North-American boreal forest vertebrate community. Snowshoe hares and lynx are both well-suited for snowy winters, but climate change associated shifts in snow conditions could lower hare survival and alter cyclic dynamics. Using detailed monitoring of snowshoe hare cause-specific mortality, behaviour, and prevailing weather, we demonstrate that hare mortality risk is strongly influenced by variation in snow conditions. Although predation risk from lynx was largely unaffected by snow conditions, coyote (<i>Canis latrans</i>) predation increased in shallow snow. Maximum snow depth in our study area has decreased 33% over the last two decades and predictions based on prolonged shallow snow indicate future hare survival could resemble that seen during population declines. Our results indicate that climate change could disrupt cyclic dynamics in the boreal forest.</p>
Dryad Logo
Dryad
Peers, Michael; Konkolics, Sean; Lamb, Clayton; Majchrzak, Yasmine; Menzies, Allyson; Studd, Emily; Boonstra, Rudy; Kenney, Alice; Krebs, Charles; Martinig, April Robin; McCulloch, Baily; Silva, Joseph; Garland, Laura; Boutin, Stan 2020-10-09 <p>1. Scavenging by vertebrates can have important impacts on food web stability and persistence, and can alter the distribution of nutrients throughout the landscape. However, scavenging communities have been understudied in most regions around the globe, and we lack understanding of the biotic drivers of vertebrate scavenging dynamics.</p> <p>2. In this paper, we examined how changes in prey density and carrion biomass caused by population cycles of a primary prey species, the snowshoe hare (<i>Lepus americanus</i>), influence scavenging communities in the northern boreal forest. We further examined the impact of habitat and temperature on scavenging dynamics.</p> <p>3. We monitored the persistence time, time until first scavenger, and number of species scavenging experimentally-placed hare carcasses over four consecutive years in the southwestern Yukon. We simultaneously monitored hare density and carrion biomass to examine their influence relative to temperature, habitat, and seasonal effects. For the primary scavengers, we developed species-specific scavenging models to determine variation on the effects of these factors across species, and determine which species may be driving temporal patterns in the entire community.</p> <p>4. We found that the efficiency of the scavenging community was affected by hare density, with carcass persistence decreasing when snowshoe hare densities declined, mainly due to increased scavenging rates by Canada lynx (<i>Lynx canadensis</i>). However, prey density did not influence the number of species scavenging a given carcass, suggesting prey abundance affects carrion recycling but not necessarily the number of connections in the food web. In addition, scavenging rates increased in warmer temperatures, and there were strong seasonal effects on the richness of the vertebrate scavenging community.</p> <p>5. Our results demonstrate that vertebrate scavenging communities are sensitive to changes in species’ demography and environmental change, and that future assessments of food web dynamics should consider links established through scavenging.</p>
Dryad Logo
Dryad
Krebs, Charles; Boonstra, Rudy; Boutin, Stan; Krebs, Charles J. 2018-06-07 1. Population cycles have long fascinated ecologists from the time of Charles Elton in the 1920s. The discovery of large population fluctuations in undisturbed ecosystems challenged the idea that pristine nature was in a state of balance. The 10-year cycle of snowshoe hares (Lepus americanus Erxleben) across the boreal forests of Canada and Alaska is a classic cycle, recognized by fur traders for more than 300 years. 2. Since the 1930s ecologists have investigated the mechanisms that might cause these cycles. Proposed causal mechanisms have varied from sunspots to food supplies, parasites, diseases, predation, and social behaviour. Both the birth rate and the death rate change dramatically over the cycle. Social behaviour was eliminated as a possible cause because snowshoe hares are not territorial and do not commit infanticide. 3. Since the 1960s large-scale manipulative experiments have been used to discover the major limiting factors. Food supply and predation quickly became recognized as potential key factors causing the cycle. Experiments adding food and restricting predator access to field populations have been decisive in pinpointing predation as the key mechanism causing these fluctuations. 4. The immediate cause of death of most snowshoe hares is predation by a variety of predators, including the Canada lynx (Lynx canadensis Kerr). The collapse in the reproductive rate is not due to food shortage as was originally thought, but is a result of chronic stress from predator chases. 5. Five major issues remain unresolved. First, what is the nature of the predator-induced memory that results in the prolonged low phase of the cycle? Second, why do hare cycles form a travelling wave, starting in the centre of the boreal forest in Saskatchewan and travelling across western Canada and Alaska? Third, why does the amplitude of the cycle vary greatly from one cycle to the next in the same area? Fourth, do the same mechanisms of population limitation apply to snowshoe hares in eastern North American or in similar ecosystems across Siberia? Finally, what effect will climatic warming have on all the above issues? The answers to these questions remain for future generations of biologists to determine.

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.