Search

Search Results

Dryad Logo
Grandmont, Thierry; Fast, Peter; Grentzmann, Ilona; Gauthier, Gilles; Bêty, Joël; Legagneux, Pierre 2023-01-09 <p>Documentation of Carry-Over Effects (COEs), defined as effects resulting from events that occurred in a previous time period, has largely been observational and understanding of specific mechanisms underlying COEs is still lacking. To investigate this, we simulated an environmental perturbation during the spring migration of a long-lived bird species and looked at the subsequent effects on various breeding parameters. We captured female greater snow geese (<em>Anser caerulescens atlanticus</em>) on their spring staging sites and maintained individuals in captivity for up to four days before releasing them. We re-observed females 3000 km North, on their Arctic breeding grounds, to estimate their breeding propensity (i.e., probability of initiating a reproductive event for a given year), and measure their arrival date, laying date, clutch size, and nesting success. Only proxies of breeding propensity were affected by our manipulation, which decreased as the time spent in captivity increased. However, females were able to overcome the effects of captivity in two out of the three years of experimentation with normal or good environmental conditions at the breeding site. When facing the additional challenge of poor environmental conditions, many individuals manipulated during migration apparently curtailed their reproductive effort by skipping breeding. This experiment is the first to show that breeding propensity is an important parameter affected by COEs resulting from stressful events prior to reproduction in long-lived species.</p>
Dryad Logo
Dryad
Lamarre, Jean-François; Legagneux, Pierre; Gauthier, Gilles; Reed, Eric T.; Bêty, Joël 2018-03-17 Overabundant species can strongly impact ecosystem functioning through trophic cascades. The strong increase in several arctic geese populations, primarily due to changes in agricultural practices in temperate regions, can have severe direct impacts on tundra ecosystems through vegetation degradation. However, predator-mediated negative effects of goose overabundance on other tundra species can also be significant but are poorly understood. We tested the hypothesis that goose abundance negatively affects arctic-nesting shorebirds by increasing nest predation pressure. We used six years of data collected within and near a greater snow goose colony (Chen caerulescens atlantica) to evaluate the effect of geese on the spatial variation in (1) the occurrence of shorebird nest predators, (2) the nest predation risk (with artificial shorebird nests), and (3) the occurrence of nesting shorebirds. We found that the goose colony had a strong influence on the spatial distribution of nest predators and nesting shorebirds. Occurrence of predators decreased, while occurrence of nesting shorebirds increased with distance from the centroid of the colony. The strength of these effects was modulated by lemming density, the preferred prey for predators. Shorebird nest predation risk also decreased with distance from the colony. Overall, these results indicate that goose abundance negatively affects arctic-nesting shorebirds through shared predators. Therefore, we show that the current decline of some arctic shorebird populations may be in part mediated by a negative effect of an overabundant species.
Dryad Logo
Dryad
Harms, N. Jane; Legagneux, Pierre; Gilchrist, H. Grant; Bêty, Joël; Love, Oliver P.; Forbes, Mark R.; Bortolotti, Gary R.; Soos, Catherine 2014-12-04 For birds, unpredictable environments during the energetically stressful times of moulting and breeding are expected to have negative fitness effects. Detecting those effects however, might be difficult if individuals modulate their physiology and/or behaviours in ways to minimize short-term fitness costs. Corticosterone in feathers (CORTf) is thought to provide information on total baseline and stress-induced CORT levels at moulting and is an integrated measure of hypothalamic–pituitary–adrenal activity during the time feathers are grown. We predicted that CORTf levels in northern common eider females would relate to subsequent body condition, reproductive success and survival, in a population of eiders nesting in the eastern Canadian Arctic during a capricious period marked by annual avian cholera outbreaks. We collected CORTf data from feathers grown during previous moult in autumn and data on phenology of subsequent reproduction and survival for 242 eider females over 5 years. Using path analyses, we detected a direct relationship between CORTf and arrival date and body condition the following year. CORTf also had negative indirect relationships with both eider reproductive success and survival of eiders during an avian cholera outbreak. This indirect effect was dramatic with a reduction of approximately 30% in subsequent survival of eiders during an avian cholera outbreak when mean CORTf increased by 1 standard deviation. This study highlights the importance of events or processes occurring during moult on subsequent expression of life-history traits and relation to individual fitness, and shows that information from non-destructive sampling of individuals can track carry-over effects across seasons.
Dryad Logo
Dryad
Hennin, Holly L.; Dey, Cody J.; Bety, Joel; Gilchrist, H. Grant; Legagneux, Pierre; Williams, Tony D.; Love, Oliver P. 2019-05-02 1. A combination of timing of and body condition (i.e., mass) at arrival on the breeding grounds interact to influence the optimal combination of the timing of reproduction and clutch size in migratory species. This relationship has been formalized by Rowe et al. in a condition-dependent individual optimization model (American Naturalist, 1994, 143, 689-722), which has been empirically tested and validated in avian species with a capital-based breeding strategy. 2. This model makes a key, but currently untested prediction; that variation in the rate of body condition gain will shift the optimal combination of laying date and clutch size. This prediction is essential because it implies that individuals can compensate for the challenges associated with late timing of arrival or poor body condition at arrival on the breeding grounds through adjustment of their life history investment decisions, in an attempt to maximize fitness. 3. Using an 11-year data set in arctic-nesting common eiders (Somateria mollissima), quantification of fattening rates using plasma triglycerides (an energetic metabolite), and a path analysis approach, we test this prediction of this optimization model; controlling for arrival date and body condition, females that fatten more quickly will adjust the optimal combination of lay date and clutch size, in favour of a larger clutch size. 4. As predicted, females fattening at higher rates initiated clutches earlier and produced larger clutch sizes, indicating that fattening rate is an important factor in addition to arrival date and body condition in predicting individual variation in reproductive investment. However, there was no direct effect of fattening rate on clutch size (i.e., birds laying on the same date had similar clutch sizes, independent of their fattening rate). Instead, fattening rate indirectly affected clutch size via earlier lay dates, thus not supporting the original predictions of the optimization model. 5. Our results demonstrate that variation in the rate of condition gain allows individuals to shift flexibly along the seasonal decline in clutch size to presumably optimize the combination of laying date and clutch size.
Dryad Logo
Dryad
Legagneux, Pierre; Hennin, Holly L.; Gilchrist, H. Grant; Williams, Tony D.; Love, Oliver P.; Bêty, Joël 2016-06-06 Theoretically, individuals of migratory species should optimize reproductive investment based on a combination of timing of and body condition at arrival on the breeding grounds. A minimum threshold body mass is required to initiate reproduction, and the timing of reaching this threshold is critical because of the trade-off between delaying breeding to gain in condition against the declining value of offspring with later reproductive timing. Long-lived species have the flexibility within their life history to skip reproduction in a given year if they are unable to achieve this theoretical mass threshold. Although the decision to breed or not is an important parameter influencing population dynamics, the mechanisms underlying this decision are poorly understood. Here, we mimicked an unpredictable environmental perturbation that induced a reduction in body mass of Arctic pre-breeding (before the laying period) female common eiders (Somateria mollissima; a long-lived migratory seaduck) while controlling for individual variation in the pre-laying physiological reproductive readiness via vitellogenin (VTG) - a yolk-targeted lipoprotein. Our aim was to causally determine the interaction between body condition and pre-laying reproductive readiness (VTG) on breeding propensity by experimentally reducing body mass in treatment females. We first demonstrated that arrival body condition was a key driver of breeding propensity. Secondly, we found treatment and VTG levels interacted to influence breeding propensity, indicating that our experimental manipulation, mimicking an unpredictable food shortage, reduced breeding propensity, regardless of the degree of pre-laying physiological reproductive readiness (i.e., timing of ovarian follicles recruitment). Our experiment demonstrates that momentary environmental perturbations during the pre-breeding period can strongly affect the decision to breed, a key parameter driving population dynamics.
Dryad Logo
Dryad
LeTourneux, Frédéric; Gauthier, Gilles; Pradel, Roger; Lefebvre, Josée; Legagneux, Pierre 2022-07-26 <p>Non-additive effects from multiple interacting stressors can have unpredictable outcomes on wildlife. Stressors that initially have negligible impacts may become significant if they act in synergy with novel stressors. Wildlife markers can be a source of physiological stress for animals and are ubiquitous in ecological studies. Their potential impacts on vital rates may vary over time, particularly when changing environments impose new stressors.</p> <p>In this study, we evaluated the temporal changes in the combined impact of two stressors, one constant (collar-marking) and another one variable over time (hunting intensity), in greater snow geese (Anser caerulescens atlantica). Over a 30-year period (1990-2019), hunting regulations were liberalized twice, in 1999 and 2009, with the instauration of special spring and winter hunting seasons, respectively. We evaluated the effect of collars on goose survival through this period of changing hunting regulations. We compared annual survival of &gt;20,000 adult females marked with and without neck collars using multievent capture-recapture models, and partitioned hunting from non-hunting mortality.</p> <p>Survival of geese marked with or without collars was similar in 1990-1998, before hunting regulations were liberalized (average survival[95% C.I.]: 0.87[0.84, 0.89]). However, absolute survival of collared geese was 0.05[0.03, 0.07] lower than that of non-collared geese between 1999 and 2009, and 0.12[0.09, 0.15] lower after hunting regulations were liberalized further in 2009. Hunting and non-hunting mortality were both higher in collared birds compared to those without collars.</p> <p>The interaction between the effects of collars and hunting was synergistic because collars affected survival only after the hunting pressure increased significantly. These cumulated stresses probably reduced goose body condition sufficiently to increase their vulnerability to multiple sources of mortality.</p> <p>Synthesis and applications: Researchers relying on long-term marking programs should evaluate the effect of markers periodically rather than solely in the beginning, as interactions with changing environmental conditions may eventually affect conclusions of studies based on marked animals. Here, we provide a rare demonstration in a natural setting that a combination of stressors can push animals beyond a threshold where vital rates are affected, even when one stressor applied alone initially had no detectable impact.</p>

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.