Search

Search Results

Dryad Logo
Côté, Héloïse; Garant, Dany; Robert, Karine; Mainguy, Julien; Pelletier, Fanie 2011-12-20 Identifying natural barriers to movements of hosts associated with infectious diseases is essential for developing effective control strategies. Raccoon rabies variant (RRV) is a zoonosis of concern for humans because its main vector, the raccoon (Procyon lotor), is found near residential areas. In Québec, Canada, all cases of RRV found in raccoons since 2006 were detected on the eastern side of the Richelieu River, suggesting that this river acts as a barrier to gene flow and thus, the potential for RRV to spread. The objectives of this study were to characterize the genetic structure of raccoon populations and assess the effect of the Richelieu River on the population structure in southern Québec, Canada. We also evaluated whether RRV spread potential differed between sex and at a larger spatial scale. Our analyses revealed a weak signal of genetic differentiation among individuals located on each side of the Richelieu River. At a larger spatial scale, genetic structuring was weak. Our results suggest that rivers might not always efficiently restrain raccoon movements and spread of RRV. We suggest that the difference in genetic structure found between sexes can be partly explained by male movements during the breeding season in winter, when ice bridges allow passage over most rivers in Québec.
Dryad Logo
Fortin, Daniel; Buono, Pietro-Luciano; Schmitz, Oswald J.; Courbin, Nicolas; Losier, Chrystel; St-Laurent, Martin-Hugues; Drapeau, Pierre; Heppell, Sandra; Dussault, Claude; Brodeur, Vincent; Mainguy, Julien 2015-07-14 Trophic interactions in multiprey systems can be largely determined by prey distributions. Yet, classic predator–prey models assume spatially homogeneous interactions between predators and prey. We developed a spatially informed theory that predicts how habitat heterogeneity alters the landscape-scale distribution of mortality risk of prey from predation, and hence the nature of predator interactions in multiprey systems. The theoretical model is a spatially explicit, multiprey functional response in which species-specific advection–diffusion models account for the response of individual prey to habitat edges. The model demonstrates that distinct responses of alternative prey species can alter the consequences of conspecific aggregation, from increasing safety to increasing predation risk. Observations of threatened boreal caribou, moose and grey wolf interacting over 378 181 km2 of human-managed boreal forest support this principle. This empirically supported theory demonstrates how distinct responses of apparent competitors to landscape heterogeneity, including to human disturbances, can reverse density dependence in fitness correlates.
Dryad Logo
Dryad
Rioux Paquette, Sébastien; Talbot, Benoit; Garant, Dany; Mainguy, Julien; Pelletier, Fanie 2014-04-02 Predicting the geographic spread of wildlife epidemics requires knowledge about the movement patterns of disease hosts or vectors. The field of landscape genetics provides valuable approaches to study dispersal indirectly, which in turn may be used to understand patterns of disease spread. Here, we applied landscape genetic analyses and spatially explicit models to identify the potential path of raccoon rabies spread in a mesocarnivore community. We used relatedness estimates derived from microsatellite genotypes of raccoons and striped skunks to investigate their dispersal patterns in a heterogeneous landscape composed predominantly of agricultural, forested and residential areas. Samples were collected in an area covering 22 000 km2 in southern Québec, where the raccoon rabies variant (RRV) was first detected in 2006. Multiple regressions on distance matrices revealed that genetic distance among male raccoons was strictly a function of geographic distance, while dispersal in female raccoons was significantly reduced by the presence of agricultural fields. In skunks, our results suggested that dispersal is increased in edge habitats between fields and forest fragments in both males and females. Resistance modelling allowed us to identify likely dispersal corridors used by these two rabies hosts, which may prove especially helpful for surveillance and control (e.g. oral vaccination) activities.

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.