Search

Search Results

Dryad Logo
Procko, Michael; Naidoo, Robin; LeMay, Valerie; Burton, A. Cole 2022-06-08 <p>The dual-mandate for many protected areas (PAs) to simultaneously promote recreation and conserve biodiversity may be hampered by negative effects of recreation on wildlife. However, reports of these effects are not consistent, presenting a knowledge gap that hinders evidence-based decision-making. We used camera traps to monitor human activity and terrestrial mammals in Golden Ears Provincial Park and the adjacent Malcolm Knapp Research Forest near Vancouver, Canada, with the objective of discerning relative effects of various forms of recreation on cougars (Puma concolor), black bears (Ursus americanus), black-tailed deer (Odocoileus hemionus), snowshoe hares (Lepus americanus), coyotes (Canis latrans), and bobcats (Lynx rufus). Additionally, public closures of the study area associated with the COVD-19 pandemic offered an unprecedented period of human-exclusion through which to explore these effects. Using Bayesian generalized mixed-effects models, we detected negative effects of hikers (mean posterior estimate = -0.58, 95% credible interval (CI) -1.09 to -0.12) on weekly bobcat habitat use and negative effects of motorized vehicles (estimate = -0.28, 95% CI -0.61 to -0.05) on weekly black bear habitat use. We also found increased cougar detection rates in the PA during the COVID-19 closure (estimate = 0.007, 95% CI 0.005 to 0.009), but decreased cougar detection rates (estimate = -0.006, 95% CI -0.009 to -0.003) and increased black-tailed deer detection rates (estimate = 0.014, 95% CI 0.002 to 0.026) upon reopening of the PA. Our results emphasize that effects of human activity on wildlife habitat use and movement may be species- and/or activity-dependent, and that camera traps can be an invaluable tool for monitoring both wildlife and human activity, collecting data even when public access is barred. Further, we encourage PA managers seeking to promote both biodiversity conservation and recreation to assess trade-offs between these two goals in their PAs.</p>
Dryad Logo
Burton, Cole; Beirne, Christopher; Sun, Catherine; Granados, Alys; Procko, Michael; Chen, Cheng; Fennell, Mitchell; Constantinou, Alexia; Colton, Christopher; Tjaden-McClement, Katie; Fisher, Jason; Burgar, Joanna 2022-06-27 <p>Human disturbance directly affects animal populations but indirect effects of disturbance on species behaviors are less well understood. Camera traps provide an opportunity to investigate variation in animal behaviors across gradients of disturbance. We used camera trap data to test predictions about predator-sensitive behavior in three ungulate species (caribou Rangifer tarandus; white-tailed deer, Odocoileus virginianus; moose, Alces alces) across two boreal forest landscapes varying in disturbance. We quantified behavior as the number of camera trap photos per detection event and tested its relationship to predation risk between a landscape with greater industrial disturbance and predator abundance (Algar) and a “control” landscape with lower human and predator activity (Richardson). We also assessed the influence of predation risk and habitat on behavior across camera sites within the disturbed Algar landscape. We predicted that animals in areas with greater predation risk (more wolf activity, less cover) would travel faster and generate fewer photos per event, while animals in areas with less predation risk would linger (rest, forage), generating more photos per event. Consistent with predictions, caribou and moose had more photos per event in the landscape where predation risk was reduced. Within the disturbed landscape, no prey species showed a significant behavioral response to wolf activity, but the number of photos per event decreased for white-tailed deer with increasing line of sight (m) along seismic lines (i.e. decreasing visual cover), consistent with a predator-sensitive response. The presence of juveniles was associated with shorter behavioral events for caribou and moose, suggesting greater predator sensitivity for females with calves. Only moose demonstrated a positive association with vegetation productivity (NDVI), suggesting that for other species influences of forage availability were generally weaker than those from predation risk. Behavioral insights can be gleaned from camera trap surveys and provide information about animal responses to predation risk and the indirect impacts of human disturbances.</p> https://creativecommons.org/publicdomain/zero/1.0/
Figshare Logo
figshare
Granados, Alys; Sun, Catherine; Fisher, Jason T.; Ladle, Andrew; Dawe, Kimberly; Beirne, Christopher; Boyce, Mark; Chow, Emily; Heim, Nicole; Fennell, Mitchell; Klees van Bommel, Joana; Naidoo, Robin; Procko, Michael; Stewart, Frances; Burton, Cole 2023 Data from Granados et al. 2023 Mammalian predator and prey responses to recreation and land use across multiple scales provide limited support for the human shield hypothesis, Ecology and Evolution https://creativecommons.org/licenses/by/4.0/legalcode

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.