Search

Search Results

Dryad Logo
Studd, Emily K.; Landry-Cuerrier, Manuelle; Menzies, Allyson K.; Boutin, Stan; McAdam, Andrew G.; Lane, Jeffrey E.; Humphries, Murray M. 2018-12-28 1. The miniaturization and affordability of new technology is driving a biologging revolution in wildlife ecology with use of animal-borne data logging devices. Among many new biologging technologies, accelerometers are emerging as key tools for continuously recording animal behavior. Yet a critical, but under-acknowledged consideration in biologging is the trade-off between sampling rate and sampling duration, created by battery- (or memory-) related sampling constraints. This is especially acute among small animals, causing most researchers to sample at high rates for very limited durations.Here, we show that high accuracy in behavioral classification is achievable when pairing low frequency acceleration recordings with temperature. 2. We conducted 84 hours of direct behavioral observations on 67 free-ranging red squirrels (200-300 g) that were fitted with accelerometers (2 g) recording tri-axial acceleration and temperature at 1 Hz. We then used a random forest algorithm and a manually-created decision tree, with variable sampling window lengths, to associate observed behavior with logger recorded acceleration and temperature. Finally, we assessed the accuracy of these different classifications using an additional 60 hours of behavioral observations, not used in the initial classification. 3. The accuracy of the manually-created decision tree classification using observational data varied from 70.6% to 91.6% depending on the complexity of the tree, with increasing accuracy as complexity decreased. Short duration behavior like running had lower accuracy than long duration behavior like feeding. The random forest algorithm offered similarly high overall accuracy, but the manual decision tree afforded the flexibility to create a hierarchical tree, and to adjust sampling window length for behavioral states with varying durations. 4. Low frequency biologging of acceleration and temperature allows accurate behavioral classification of small animals over multi-month sampling durations. Nevertheless, low sampling rates impose several important limitations, especially related to assessing the classification accuracy of short duration behavior.
Dryad Logo
Dryad
Studd, Emily K.; Boutin, Stan; McAdam, Andrew G.; Krebs, Charles J.; Humphries, Murray M. 2015-08-04 Neonatal reproductive failure should occur when energetic costs of parental investment outweigh fitness benefits. However, little is known about the drivers of neonatal reproductive failure in free ranging species experiencing continuous natural variation in predator abundance and in the energetic and fitness costs and benefits associated with parental investment. Long-term comprehensive studies are required to better understand how biotic, abiotic, and life history conditions interact to drive occurrences of reproductive failure in the wild. Using 24 years (1987-2011) of reproductive data from a northern boreal population of North American red squirrels in southwestern Yukon, we examined the effects of predator abundance, energetics (resource availability, ambient temperature and litter size), and fitness benefits (probability of overwinter juvenile survival and maternal age) on occurrences of neonatal reproductive failure (494/2670 reproductive attempts; 18.5%). Neonatal reproductive failure was driven by a combination of predator abundance, and the energetic and fitness costs and benefits of parental investment. The abundance of mustelids and maternal age were positively related to the occurrence of neonatal reproductive failure. High energy costs associated with a combination of low resource availability and cold ambient temperatures or large litters, corresponded to increased occurrences of neonatal reproductive failure. However, the strength of these relationships was influenced by variation in juvenile overwinter survival (i.e. fitness benefits). We provide evidence that predation pressure is an important driver of neonatal reproductive failure. In addition, we found a trade-off occurs between resource-dependent energetic and fitness costs and benefits of raising the current litter to independence

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.