Search

Search Results

Dryad Logo
Morissette, Olivier; Bernatchez, Louis; Wiendenbeck, Michael; Sirois, Pascal 2020-03-04 <p class="Text" style="text-align:justify;"><b>1. </b>The selection of thermal habitat by fish is strongly regulated by physiology and behaviour. However, delineation of a species lifelong thermal niche remains technically challenging. Lake trout (<i>Salvelinus namaycush</i>) survival and productivity are recognised as being tightly linked to a somewhat restricted thermal habitat. The factors guiding temperature selection during each life stage remain poorly understood.</p> <p class="Text" style="text-align:justify;"><b>2.</b> In this study, we tested the significant factors controlling the realised thermal niche of lake trout from two southern Quebec small boreal lakes that experienced supplementation stocking during the last 20 years. We used oxygen stable isotope (δ<sup>18</sup>O) thermometry of otolith calcium carbonates (aragonite) using secondary-ion mass spectrometry (SIMS) to estimate experienced lifelong temperatures. We investigated the thermal habitat of lake trout with known genotypes (local, hybrid and stocked).</p> <p class="Text" style="text-align:justify;"><b>3</b>. Ontogeny and genetic origin influenced temperature selection in both studied lake trout populations. Young-of-the-year consistently used warmer, shallower habitats (10.7 ± 2.6°C, 7.5 m depth) prior to a juvenile transition to colder and deeper waters (8.5 ± 3.3°C, 10 m depth). Stocked lake trout, originating from a genetically distinct ecotype, exhibited a more variable thermal niche, with some individuals consistently using warmer habitat (10.4 ± 1°C) than local fish. Their hybrid progeny also occupied a warmer thermal niche, intermediate to the parental strains. We propose that increased fat content and genetic origin are potential explanatory factors for warmer temperature use.</p> <p><b>4</b>. This study reiterates that high-resolution otolith δ<sup>18</sup>O thermometry is a uniquely well-suited approach for unravelling the multiple factors that influence lifelong temperature selection in fish. Our results illustrate that the realised thermal niche is influenced by a genetic-environment interaction.</p>

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.