Search

Search Results

Global Water Futures (FRDR) Logo
Federated Research Data Repository / dépôt fédéré de données de recherche
Spence, Christopher; Hedstrom, Newell 2024-04-25 It is uncommon to collect long term coordinated hydrometeorological and hydrological data in northern circumpolar regions. However, such datasets can be very valuable for engineering design, improving environmental prediction tools or detecting change. This dataset documents hydrometeorological and hydrological conditions in the Baker Creek Research Catchment from 2003 to 2016. Baker Creek drains water from 155 km2 of subarctic Canadian Shield terrain in Canada’s Northwest Territories. Seasonal half hourly hydrometeorological, ground temperature and soil moisture data were collected from representative locations, including exposed Precambrian bedrock ridges, peatlands, open black spruce forest and lakes. Hydrometeorological data includes incoming radiation, rainfall, temperature, humidity, winds, barometric pressure, and turbulent fluxes. Spring maximum snowpack water equivalent, depth and density data are included. Daily streamflow data are available from a series of nested watersheds ranging in size from 9 to 128 km2. These data provide the scientific and engineering communities with an opportunity to advance understanding of geophysical processes and improve infrastructure resiliency in this remote region. **Please note: this dataset is linked to an ESSD paper at https://doi.org/10.5194/essd-10-1753-2018.  The authors kindly request that you reference this paper in addition to the dataset. https://creativecommons.org/licenses/by/4.0/
Global Water Futures (FRDR) Logo
Federated Research Data Repository / dépôt fédéré de données de recherche
He, Zhihua; Spence, Christopher; Shook, Kevin R.; Pomeroy, John W; Whitfield, Colin; Wolfe, Jared 2024-03-27 The dataset is comprised of inputs to and outputs from the Cold Regions Hydrological Model (CRHM) when it was run as a virtual model of the Pothole Till class, as defined by Wolfe et al. (2019). These watersheds represented typified prairie watersheds based on physiogeography and coherent response to environmental change. Model parameters were informed by the results of Wolfe et al. (2019). The .prj files necessary to run the virtual models are included in the dataset. Climate forcing data are from the Adjusted and Homogenized Canadian Climate Dataset from a cohort of stations contained within each watershed class and cover a period from 1960-2006. There are a series of wetland drainage scenarios that progressively reduced the wetland depression area and storage capacity by increments of 10%. Model output includes hourly catchment outflow, and depression water storage in the HRUs for the baseline and each scenario. https://creativecommons.org/licenses/by/4.0/
Global Water Futures (FRDR) Logo
Federated Research Data Repository / dépôt fédéré de données de recherche
He, Zhihua; Shook, Kevin R.; Spence, Christopher; Pomeroy, John W; Whitfield, Colin 2025-01-20 The dataset is comprised of inputs to and outputs from the Cold Regions Hydrological Model (CRHM) when it was run as a virtual model of the seven prairie basin classes, as defined by He et al. (2023). These watersheds represented typified prairie watersheds based on physiogeography and coherent response to environmental change. Model parameters were informed by the results of He et al. (2023). The .prj files necessary to run the virtual models are included in the dataset. Climate forcing data are from the Adjusted and Homogenized Canadian Climate Dataset from a cohort of stations contained within each watershed class and cover a period from 1960-2006. There are a series of climate sensitivity scenarios that include applying a delta method to the original climate data (i.e., 1°C increments of warming, and -20%, +10%, +20% and +30% of precipitation). Model output includes hourly catchment outflow, and depression water storage in the HRUs for the baseline and each scenario. There are also a series of wetland drainage scenarios that progressively reduced the wetland depression area. https://creativecommons.org/licenses/by/4.0/
Global Water Futures (FRDR) Logo
Federated Research Data Repository / dépôt fédéré de données de recherche
He, Zhihua; Shook, Kevin R.; Spence, Christopher; Pomeroy, John W; Whitfield, Colin 2025-01-14 The dataset is comprised of inputs to and outputs from the Cold Regions Hydrological Model (CRHM) when it was run as a virtual model of six prairie basin classes, as defined by He et al. (2023). These watersheds represented typified prairie watersheds based on physiogeography and coherent response to environmental change. Model parameters were informed by the results of He et al. (2023). The .prj files necessary to run the virtual models are included in the dataset. Climate forcing data are from the Adjusted and Homogenized Canadian Climate Dataset from ten stations over the Prairies and cover a period from 1960-2006. There are a series of wetland drainage and restoration scenarios that progressively reduced and increased the wetland depression area. Model output includes hourly catchment outflow, snow sublimation, soil moisture, and depression water storage in the HRUs for the baseline and each wetland management scenario. https://creativecommons.org/licenses/by/4.0/
Global Water Futures (FRDR) Logo
Federated Research Data Repository / dépôt fédéré de données de recherche
He, Zhihua; Spence, Christopher; Shook, Kevin R.; Whitfield, Colin J.; Pomeroy, John W; Wolfe, Jared 2024-03-27 The dataset is comprised of inputs to and outputs from the Cold Regions Hydrological Model (CRHM) when it was run as a virtual model of the High Elevation Grasslands class, as defined by Wolfe et al. (2019). These watersheds represented typified prairie watersheds based on physiogeography and coherent response to environmental change. Model parameters were informed by the results of Wolfe et al. (2019). The .prj files necessary to run the virtual models are included in the dataset. Climate forcing data are from the Adjusted and Homogenized Canadian Climate Dataset from a cohort of stations contained within each watershed class and cover a period from 1960-2006. There are a series of climate sensitivity scenarios that include applying a delta method to the original climate data (i.e., 1°C increments of warming, and -20%, +10%, +20% and +30% of precipitation). Model output includes hourly catchment outflow, rainfall, snowfall, snow sublimation and snow water equivalent for the baseline and each scenario.

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 50 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.