Recherche

Résultats de recherche

UBC cIRcle BIRS Workshop Lecture Videos Translation missing: fr.blacklight.search.logo
Banff International Research Station for Mathematical Innovation and Discovery
Litvak, Alexander 2017-11-22 Let $X$ be an $n$-dimensional random centered Gaussian vector with independent but not necessarily identically distributed coordinates and let $T$ be an orthogonal transformation of $\R^n$. We show that the random vector $Y=T(X)$ satisfies $$ \mathbb{E} \sum \limits_{j=1}^k j\mobx{-}\min _{i\leq n}{X_{i}}^2 \leq C \mathbb{E} \sum\limits_{j=1}^k j\mobx{-}\min _{i\leq n}{Y_{i}}^2 $$ for all $k\leq n$, where ``$\jm$'' denotes the $j$-th smallest component of the corresponding vector and $C>0$ is a universal constant. This resolves (up to a multiplicative constant) an old question of S.Mallat and O.Zeitouni regarding optimality of the Karhunen--Lo\`eve basis for the nonlinear reconstruction. We also show some relations for order statistics of random vectors (not only Gaussian) which are of independent interest. This is a joint work with Konstantin Tikhomirov. Non UBC Unreviewed Author affiliation: University of Alberta Faculty http://creativecommons.org/licenses/by-nc-nd/4.0/
UBC cIRcle BIRS Workshop Lecture Videos Translation missing: fr.blacklight.search.logo
Banff International Research Station for Mathematical Innovation and Discovery
Litvak, Alexander 2020-12-12 Let $M$ be a random $n\times n$ matrix with independent 0/1 random entries taking value 1 with probability $0 < p=p(n) < 1$. We provide sharp bounds on the probability that $M$ is singular for $C(\ln n)/n\leq p\leq c$, where $C, c$ are absolute positive constants. Roughly speaking, we show that this probability is essentially equal to the probability that $M$ has either zero row or zero column. Joint work with Konstantin Tikhomirov. Non UBC Unreviewed Author affiliation: University of Alberta Faculty http://creativecommons.org/licenses/by-nc-nd/4.0/
UBC cIRcle BIRS Workshop Lecture Videos Translation missing: fr.blacklight.search.logo
Banff International Research Station for Mathematical Innovation and Discovery
Litvak, Alexander 2014-08-07 Non UBC Unreviewed Author affiliation: University of Alberta Faculty http://creativecommons.org/licenses/by-nc-nd/2.5/ca/
UBC cIRcle BIRS Workshop Lecture Videos Translation missing: fr.blacklight.search.logo
Banff International Research Station for Mathematical Innovation and Discovery
Litvak, Alexander 2015-08-17 Non UBC Unreviewed Author affiliation: University of Alberta Faculty http://creativecommons.org/licenses/by-nc-nd/2.5/ca/
UBC cIRcle BIRS Workshop Lecture Videos Translation missing: fr.blacklight.search.logo
Banff International Research Station for Mathematical Innovation and Discovery
Litvak, Alexander 2015-11-20 Non UBC Unreviewed Author affiliation: University of Alberta Faculty http://creativecommons.org/licenses/by-nc-nd/2.5/ca/

Instructions pour la recherche cartographique

1.Activez le filtre cartographique en cliquant sur le bouton « Limiter à la zone sur la carte ».
2.Déplacez la carte pour afficher la zone qui vous intéresse. Maintenez la touche Maj enfoncée et cliquez pour encadrer une zone spécifique à agrandir sur la carte. Les résultats de la recherche changeront à mesure que vous déplacerez la carte.
3.Pour voir les détails d’un emplacement, vous pouvez cliquer soit sur un élément dans les résultats de recherche, soit sur l’épingle d’un emplacement sur la carte et sur le lien associé au titre.
Remarque : Les groupes servent à donner un aperçu visuel de l’emplacement des données. Puisqu’un maximum de 50 emplacements peut s’afficher sur la carte, il est possible que vous n’obteniez pas un portrait exact du nombre total de résultats de recherche.