Recherche

Résultats de recherche

Dryad Translation missing: fr.blacklight.search.logo
Davies, T. Jonathan; Wolkovich, Elizabeth M.; Kraft, Nathan J. B.; Salamin, Nicolas; Allen, Jenica M.; Ault, Toby R.; Betancourt, Julio L.; Bolmgren, Kjell; Cleland, Elsa E.; Cook, Benjamin I.; Crimmins, Theresa M.; Mazer, Susan J.; McCabe, Gregory J.; Pau, Stephanie; Regetz, Jim; Schwartz, Mark D.; Travers, Steven E. 2014-04-02 Phenological events – defined points in the life cycle of a plant or animal – have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues. The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Understanding the predictors and drivers of phenological change is therefore critical. Here, we evaluated evidence for phylogenetic conservatism – the tendency for closely related species to share similar ecological and biological attributes – in phenological traits across flowering plants. We aggregated published and unpublished data on timing of first flower and first leaf, encompassing ˜4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set of included species, first, using the software program Phylomatic, and second, from DNA data. We then quantified phylogenetic conservatism in plant phenology within and across sites. We show that more closely related species tend to flower and leaf at similar times. By contrasting mean flowering times within and across sites, however, we illustrate that it is not the time of year that is conserved, but rather the phenological responses to a common set of abiotic cues. Our findings suggest that species cannot be treated as statistically independent when modelling phenological responses. Synthesis. Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conserved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species' shared evolutionary histories.
Dryad Translation missing: fr.blacklight.search.logo
Dryad
Hodapp, Dorothee; Borer, Elizabeth T.; Harpole, W. Stanley; Lind, Eric M.; Seabloom, Eric W.; Adler, Peter B.; Alberti, Juan; Arnillas, Carlos A.; Bakker, Jonathan D.; Biederman, Lori; Cadotte, Marc; Cleland, Elsa E.; Collins, Scott; Fay, Philip A.; Firn, Jennifer; Hagenah, Nicole; Hautier, Yann; Iribarne, Oscar; Knops, Johannes M.H.; McCulley, Rebecca L.; MacDougall, Andrew; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; La Pierre, Kimberly J.; Risch, Anita C.; Schuetz, Martin; Peri, Pablo; Stevens, Carly J.; Wright, Justin; Hillebrand, Helmut; Knops, Johannes M. H. 2019-05-24 Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta-diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change – fertilization and herbivore loss – are affected by species pool size and spatial compositional heterogeneity. Fertilization led to higher rates of local extinction whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics.

Instructions pour la recherche cartographique

1.Activez le filtre cartographique en cliquant sur le bouton « Limiter à la zone sur la carte ».
2.Déplacez la carte pour afficher la zone qui vous intéresse. Maintenez la touche Maj enfoncée et cliquez pour encadrer une zone spécifique à agrandir sur la carte. Les résultats de la recherche changeront à mesure que vous déplacerez la carte.
3.Pour voir les détails d’un emplacement, vous pouvez cliquer soit sur un élément dans les résultats de recherche, soit sur l’épingle d’un emplacement sur la carte et sur le lien associé au titre.
Remarque : Les groupes servent à donner un aperçu visuel de l’emplacement des données. Puisqu’un maximum de 50 emplacements peut s’afficher sur la carte, il est possible que vous n’obteniez pas un portrait exact du nombre total de résultats de recherche.