Recherche

Résultats de recherche

Dryad Translation missing: fr.blacklight.search.logo
Clare, Elizabeth L.; Fazekas, Aron J.; Ivanova, Natalia V.; Floyd, Robin M.; Hebert, Paul D.N.; Adams, Amanda M.; Nagel, Juliet; Girton, Rebecca; Newmaster, Steven G.; Fenton, M. Brock; Hebert, Paul D. N. 2018-10-31 As molecular tools for assessing trophic interactions become common, research is increasingly focused on the construction of interaction networks. Here we demonstrate three key methods for incorporating DNA data into network ecology and discuss analytical considerations using a model consisting of plants, insects, bats and their parasites from the Costa Rican dry forest. The simplest method involves the use of Sanger sequencing to acquire long sequences to validate or refine field identifications, for example of bats and their parasites, where one specimen yields one sequence and one identification. This method can be fully quantified and resolved and these data resemble traditional ecological networks. For more complex taxonomic identifications, we target multiple DNA loci e.g. from a seed or fruit pulp sample in faeces. These networks are also well resolved but gene targets vary in resolution and quantification is difficult. Finally for mixed templates such as faecal contents of insectivorous bats we use DNA metabarcoding targeting two sequence lengths (157bp, 407bp) of one gene region and a MOTU, BLAST and BIN association approach to resolve nodes. This network type is complex to generate and analyse and we discuss the implications of this type of resolution on network analysis. Using these data we construct the first molecular-based network of networks containing 3304 interactions between 762 nodes of 8 trophic functions and involving parasitic, mutualistic, and predatory interactions. We provide a comparison of the relative strengths and weaknesses of these data types in network ecology. https://creativecommons.org/publicdomain/zero/1.0/
Dryad Translation missing: fr.blacklight.search.logo
Dryad
Percy, Diana M.; Argus, George W.; Cronk, Quentin C.; Fazekas, Aron J.; Kesanakurti, Prasad R.; Burgess, Kevin S.; Husband, Brian C.; Newmaster, Steven G.; Barrett, Spencer C. H.; Graham, Sean W.; Barrett, Spencer C.H. 2014-06-17 Willows (Salix: Salicaceae) form a major ecological component of Holarctic floras, and consequently are an obvious target for a DNA-based identification system. We surveyed two to seven plastid genome regions (~3.8 kb; ~3% of the genome) from 71 Salix species across all five subgenera, to assess their performance as DNA barcode markers. Although Salix has a relatively high level of interspecific hybridization, this may not sufficiently explain the near complete failure of barcoding that we observed: only one species had a unique barcode. We recovered 39 unique haplotypes, from more than 500 specimens, that could be partitioned into six major haplotype groups. A unique variant of group I (haplotype 1*) was shared by 53 species in three of five Salix subgenera. This unusual pattern of haplotype sharing across infrageneric taxa is suggestive of either a massive non-random coalescence failure (incomplete lineage sorting), or of repeated plastid capture events, possibly including a historical selective sweep of haplotype 1* across taxonomic sections. The former is unlikely as molecular dating indicates that haplotype 1* originated recently, and is nested in the oldest major haplotype group in the genus. Further, we detected significant non-neutrality in the frequency spectrum of mutations in group I, but not outside group I, and demonstrated a striking absence of geographic structure to the haplotype distributions in this group. The most likely explanation for the patterns we observed involves recent repeated plastid capture events, aided by widespread hybridization and long-range seed dispersal, but primarily propelled by one or more trans-species selective sweeps.

Instructions pour la recherche cartographique

1.Activez le filtre cartographique en cliquant sur le bouton « Limiter à la zone sur la carte ».
2.Déplacez la carte pour afficher la zone qui vous intéresse. Maintenez la touche Maj enfoncée et cliquez pour encadrer une zone spécifique à agrandir sur la carte. Les résultats de la recherche changeront à mesure que vous déplacerez la carte.
3.Pour voir les détails d’un emplacement, vous pouvez cliquer soit sur un élément dans les résultats de recherche, soit sur l’épingle d’un emplacement sur la carte et sur le lien associé au titre.
Remarque : Les groupes servent à donner un aperçu visuel de l’emplacement des données. Puisqu’un maximum de 50 emplacements peut s’afficher sur la carte, il est possible que vous n’obteniez pas un portrait exact du nombre total de résultats de recherche.