Recherche

Résultats de recherche

Dryad Translation missing: fr.blacklight.search.logo
Dryad
Kess, Tony; Galindo, Juan; Boulding, Elizabeth G. 2019-06-11 The rough periwinkle, Littorina saxatilis, is a model system for studying parallel ecological speciation in microparapatry. Phenotypically parallel wave-adapted and crab-adapted ecotypes that hybridize within the middle shore are replicated along the northwestern coast of Spain, and have likely arisen from two separate glacial refugia. We tested whether greater geographic separation corresponding to reduced opportunity for contemporary or historical gene flow between parallel ecotypes resulted in less parallel genomic divergence. We sequenced double-digested restriction-associated DNA (ddRAD) libraries from individual snails from upper, mid, and low intertidal levels of three separate sites colonized from two separate refugia. FDIST analysis of 4256 SNP markers identified 34.4% sharing of divergent loci between two geographically-close sites, however, these sites each shared only 9.9-15.1% of their divergent loci with a third more-distant site. STRUCTURE analysis revealed that genotypes from only three of 166 phenotypically intermediate mid-shore individuals appeared to result from recent hybridization suggesting that hybrids cannot be reliably identified using shell traits. Hierarchical AMOVA indicated that the primary source of genomic differentiation was geographic separation, but also revealed greater similarity of the same ecotype across the two geographically-close sites than previously estimated with dominant markers. These results from a model system for ecological speciation suggest that genomic parallelism is affected by the opportunity for historical or contemporary gene flow between populations.
Dryad Translation missing: fr.blacklight.search.logo
Dryad
Boulding, Elizabeth G.; Rivas, María José; González-Lavín, Nerea; Rolán-Alvarez, Emilio; Galindo, Juan 2016-12-27 The intertidal snail Littorina saxatilis has repeatedly evolved two parallel ecotypes assumed to be wave adapted and predatory shore crab adapted, but the magnitude and targets of predator-driven selection are unknown. In Spain, a small, wave ecotype with a large aperture from the lower shore and a large, thick-shelled crab ecotype from the upper shore meet in the mid-shore and show partial size-assortative mating. We performed complementary field tethering and laboratory predation experiments; the first set compared the survival of two different size-classes of the crab ecotype while the second compared the same size-class of the two ecotypes. In the first set, the large size-class of the crab ecotype survived significantly better than the small size-class both on the upper shore and in the laboratory. In the second set, the small size-class of the crab ecotype survived substantially better than that of the wave ecotype both on the upper shore and in the laboratory. Shell-breaking predation on tethered snails was almost absent within the lower shore. In the laboratory shore crabs (Pachygrapsus marmoratus) with larger claw heights selected most strongly against the small size-class of the crab ecotype, whereas those with medium claw heights selected most strongly against the thin-shelled wave ecotype. Sexual maturity occurred at a much larger size in the crab ecotype than in the wave ecotype. Our results showed that selection on the upper shore for rapid attainment of a size refuge from this gape-limited predator favors large size, thick shells, and late maturity. Model parameterization showed that size-selective predation restricted to the upper shore resulted in the evolution of the crab ecotype despite gene flow from the wave ecotype snails living on the lower shore. These results on gape-limited predation and previous ones showing size-assortative mating between ecotypes suggest that size may represent a magic trait for the thick-shelled ecotype.

Instructions pour la recherche cartographique

1.Activez le filtre cartographique en cliquant sur le bouton « Limiter à la zone sur la carte ».
2.Déplacez la carte pour afficher la zone qui vous intéresse. Maintenez la touche Maj enfoncée et cliquez pour encadrer une zone spécifique à agrandir sur la carte. Les résultats de la recherche changeront à mesure que vous déplacerez la carte.
3.Pour voir les détails d’un emplacement, vous pouvez cliquer soit sur un élément dans les résultats de recherche, soit sur l’épingle d’un emplacement sur la carte et sur le lien associé au titre.
Remarque : Les groupes servent à donner un aperçu visuel de l’emplacement des données. Puisqu’un maximum de 50 emplacements peut s’afficher sur la carte, il est possible que vous n’obteniez pas un portrait exact du nombre total de résultats de recherche.