Recherche

Résultats de recherche

Dryad Translation missing: fr.blacklight.search.logo
Melnyk, Anita H.; Kassen, Rees 2011-04-20 The repeatability of adaptive evolution depends on the ruggedness of the underlying adaptive landscape. We contrasted the relative ruggedness of adaptive landscapes across two environments by measuring the variance in fitness and metabolic phenotype within and among genetically distinct strains of Pseudomonas fluorescens in two environments differing only in the carbon source provided (glucose vs. xylose). Fitness increased in all lines, plateauing in one environment but not the other. The pattern of variance in fitness among replicate lines was unique to the selection environment; it increased over the course of the experiment in xylose but not in glucose. Metabolic phenotypes displayed two results: (1) populations adapted via changes that were distinctive to their selection environment, and (2) endpoint phenotypes were less variable in glucose than in xylose. These results indicate that although the response to selection is highly repeatable at the level of fitness, the underlying genetic routes taken were different for each environment and more variable in xylose. We suggest that this reflects a more rugged adaptive landscape in xylose compared to glucose. Our study demonstrates the utility of using replicate selection lines with different evolutionary starting points to try and quantify the relative ruggedness of adaptive landscapes. https://creativecommons.org/publicdomain/zero/1.0/
Dryad Translation missing: fr.blacklight.search.logo
Chakraborty, Partha; Nemzer, Louis; Kassen, Rees 2023-09-22 <p>Whether and how the spatial arrangement of a population influences adaptive evolution has puzzled evolutionary biologists. Theoretical models make conflicting predictions about the probability a beneficial mutation will become fixed in a population for certain topologies like stars, in which “leaf” populations are connected through a central “hub.” To date, these predictions have not been evaluated under realistic experimental conditions. Here, we test the prediction that topology can change the dynamics of fixation both in vitro and in silico by tracking the frequency of a beneficial mutant under positive selection as it spreads through networks of different topologies. Our results provide empirical support that metapopulation topology can increase the likelihood that a beneficial mutation spreads, broadens the conditions under which this phenomenon is thought to occur, and points the way towards using network topology to amplify the effects of weakly favored mutations under directed evolution in industrial applications. </p>
Dryad Translation missing: fr.blacklight.search.logo
Dryad
Chen, Patrick; Kassen, Rees 2020-08-26 <p style="margin-bottom:13px;"><span>How genetic variation arises and persists over evolutionary time despite the depleting effects of natural selection remains a long-standing question. Here, we investigate the impacts of two extreme forms of population regulation – at the level of the total, mixed population (hard selection) and at the level of local, spatially distinct patches (soft selection) – on the emergence and fate of diversity under strong divergent selection. We find that while the form of population regulation has little effect on rates of diversification it can modulate the long-term fate of genetic variation, diversity being more readily maintained under soft selection compared to hard selection. The mechanism responsible for coexistence is negative frequency dependent selection which, while present initially under both forms of population regulation, persists over the long-term only under soft selection. Importantly, coexistence is robust to continued evolution of niche specialist types under soft selection but not hard selection. These results suggest that soft selection could be a general mechanism for the maintenance of ecological diversity over evolutionary time scales. </span></p>
Dryad Translation missing: fr.blacklight.search.logo
Dryad
Rode, Nicolas O.; Soroye, Peter; Kassen, Rees; Rundle, Howard D. 2017-01-30 Genotype by genotype indirect genetic effects (G × G IGEs) occur when the phenotype of an individual is influenced by an interaction between its own genotype and those of neighbour individuals. Little is known regarding the relative importance of G × G IGEs compared with other forms of direct and indirect genetic effects. We quantified the relative importance of IGEs in the filamentous fungus Aspergillus nidulans, a species in which IGEs are likely to be important as air-borne social interactions are known to affect growth. We used a collection of distantly related wild isolates, lab strains and a set of closely related mutation accumulation lines to estimate the contribution of direct and indirect genetic effects on mycelium growth rate, a key fitness component. We found that indirect genetic effects were dominated by G × G IGEs that occurred primarily between a focal genotype and its immediate neighbour within a vertical stack, and these accounted for 11% of phenotypic variation. These results indicate that G × G IGEs may be substantial, at least in some systems, and that the evolutionary importance of these interactions may be underappreciated, especially in microbes. We advocate for a wider use of the IGE framework in both applied (for example, choice of varietal mixtures in plant breeding) and evolutionary genetics (kin selection/kin competition studies).
Dryad Translation missing: fr.blacklight.search.logo
Schick, Alana; Kassen, Rees 2018-10-03 Chronic infection of the cystic fibrosis (CF) airway by the opportunistic pathogen Pseudomonas aeruginosa is the leading cause of morbidity and mortality for adult CF patients. Prolonged infections are accompanied by adaptation of P. aeruginosa to the unique conditions of the CF lung environment, as well as marked diversification of the pathogen into phenotypically and genetically distinct strains that can coexist for years within a patient. Little is known, however, about the causes of this diversification and its impact on patient health. Here, we show experimentally that, consistent with ecological theory of diversification, the nutritional conditions of the CF airway can cause rapid and extensive diversification of P. aeruginosa. Mucin, the substance responsible for the increased viscosity associated with the thick mucus layer in the CF airway, had little impact on within-population diversification but did promote divergence among populations. Furthermore, in vitro evolution recapitulated traits thought to be hallmarks of chronic infection, including reduced motility and increased biofilm formation, and the range of phenotypes observed in a collection of clinical isolates. Our results suggest that nutritional complexity and reduced dispersal can drive evolutionary diversification of P. aeruginosa independent of other features of the CF lung such as an active immune system or the presence of competing microbial species. We suggest that diversification, by generating extensive phenotypic and genetic variation on which selection can act, may be a key first step in the development of chronic infections.
Dryad Translation missing: fr.blacklight.search.logo
Dryad
Gifford, Danna R; Schoustra, Sijmen E; Kassen, Rees 2011-05-27 Adaptation involves the successive substitution of beneficial mutations by selection, a process known as an adaptive walk. Gradualist models of adaptation, which assume that all mutations are small relative to the distance to a fitness optimum, predict that adaptive walks should be longer when the founding genotype is less well adapted. More recent work modelling adaptation as a sequence of moves in phenotype or genotype space predicts, by contrast, much shorter adaptive walks irrespective of the fitness of the founding genotype. Here we provide what is, to the best of our knowledge, the first direct test of these alternative models, measuring the length of adaptive walks in evolving lineages of fungus that differ initially in fitness. Contrary to the gradualist view, we show that the length of adaptive walks in the fungus Aspergillus nidulans is insensitive to starting fitness and involves just two mutations on average. This arises because poorly adapted populations tend to fix mutations of larger average effect than those of better-adapted populations. Our results suggest that the length of adaptive walks may be independent of the fitness of the founding genotype and, moreover, that poorly adapted populations can quickly adapt to novel environments.

Instructions pour la recherche cartographique

1.Activez le filtre cartographique en cliquant sur le bouton « Limiter à la zone sur la carte ».
2.Déplacez la carte pour afficher la zone qui vous intéresse. Maintenez la touche Maj enfoncée et cliquez pour encadrer une zone spécifique à agrandir sur la carte. Les résultats de la recherche changeront à mesure que vous déplacerez la carte.
3.Pour voir les détails d’un emplacement, vous pouvez cliquer soit sur un élément dans les résultats de recherche, soit sur l’épingle d’un emplacement sur la carte et sur le lien associé au titre.
Remarque : Les groupes servent à donner un aperçu visuel de l’emplacement des données. Puisqu’un maximum de 50 emplacements peut s’afficher sur la carte, il est possible que vous n’obteniez pas un portrait exact du nombre total de résultats de recherche.