Recherche

Résultats de recherche

Zenodo Translation missing: fr.blacklight.search.logo
Zenodo
Seth, Pratinav; Lin, Michelle; Dwamena Yaw, Brefo; Boutot, Jade; Kang, Mary; Rolnick, David 2024-09-10 Millions of abandoned oil and gas wells are scattered across the world, leaching methane into the atmosphere and toxic compounds into the groundwater. Many of these locations are unknown, preventing the wells from being plugged and their polluting effects averted. Remote sensing is a relatively unexplored tool for pinpointing abandoned wells at scale. We introduce the first large-scale dataset for this problem, leveraging medium-resolution multi-spectral satellite imagery from Planet Labs. Our curated dataset comprises over 213,000 wells (abandoned, suspended, and active) from Alberta, a region with especially high well density, sourced from the Alberta Energy Regulator and verified by domain experts. We evaluate baseline algorithms for well detection and segmentation, showing the promise of computer vision approaches but also significant room for improvement. The AWD Dataset is released under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License ( https://creativecommons.org/licenses/by-nc/4.0/ ). The satellite imagery for this project was acquired through Planet Labs' Education & Research license, which allows the use of the data in publications and the creation of derivative products related to those publications. However, the raw imagery cannot be shared publicly. This data is for academic use only and should not be used commercially. Proper credit to the current authors, Planet Labs, and the Alberta Energy Regulator is required when using this data. https://creativecommons.org/licenses/by-nc/4.0/legalcode
Zenodo Translation missing: fr.blacklight.search.logo
Zenodo
Jain, Aditya; Cunha, Fagner; Bunsen, Michael James; Cañas, Juan Sebastián; Pasi, Léonard; Pinoy, Nathan; Helsing, Flemming; Russo, JoAnne; Botham, Marc; Sabourin, Michael; Frechette, Jonathan; Anctil, Alexandre; Lopez, Yacksecari; Navarro, Eduardo; Pimentel, Filonila Perez; Zamora, Ana Cecilia; Silva, José Alejandro Ramirez; Gagnon, Jonathan; August, Tom; Bjerge, Kim; Segura, Alba Gomez; Bélisle, Marc; Basset, Yves; McFarland, Kent P.; Roy, David; Høye, Toke Thomas; Larrivée, Maxim; Rolnick, David 2024-06-26 The dataset created as part of the work "Insect Identification in the Wild: The AMI Dataset". The arXiv version is available here. The AMI (Automated Monitoring of Insects) dataset, consists of two parts: 1) AMI-GBIF, a dataset of ∼2.5M human-captured insect images curated from citizen science platforms and museum collections, 2) AMI-Traps, an expert-annotated dataset of 2,893 insect camera trap images (representing 52,948 labeled insects) collected from a global network of automated camera traps, designed to test in-the-wild performance. https://opensource.org/licenses/MIT

Instructions pour la recherche cartographique

1.Activez le filtre cartographique en cliquant sur le bouton « Limiter à la zone sur la carte ».
2.Déplacez la carte pour afficher la zone qui vous intéresse. Maintenez la touche Maj enfoncée et cliquez pour encadrer une zone spécifique à agrandir sur la carte. Les résultats de la recherche changeront à mesure que vous déplacerez la carte.
3.Pour voir les détails d’un emplacement, vous pouvez cliquer soit sur un élément dans les résultats de recherche, soit sur l’épingle d’un emplacement sur la carte et sur le lien associé au titre.
Remarque : Les groupes servent à donner un aperçu visuel de l’emplacement des données. Puisqu’un maximum de 50 emplacements peut s’afficher sur la carte, il est possible que vous n’obteniez pas un portrait exact du nombre total de résultats de recherche.