Recherche

Résultats de recherche

Dryad Translation missing: fr.blacklight.search.logo
Lind, Brandon; Candido-Ribeiro, Rafael; Singh, Pooja; Lu, Mengmeng; Obreht Vidakovic, Dragana; Booker, Tom; Whitlock, Michael; Yeaman, Sam; Isabel, Nathalie; Aitken, Sally 2024-04-17 <p>Methods using genomic information to forecast potential population maladaptation to climate change or new environments are becoming increasingly common, yet the lack of model validation poses serious hurdles toward their incorporation into management and policy. Here, we compare the validation of maladaptation estimates derived from two methods – Gradient Forests (GF<sub>offset</sub>) and the Risk Of Non-Adaptedness (RONA) – using exome capture pool-seq data from 35 to 39 populations across three conifer taxa: two Douglas-fir varieties and jack pine. We evaluate sensitivity of these algorithms to the source of input loci (markers selected from genotype-environment associations [GEA] or those selected at random). We validate these methods against two-year and 52-year growth and mortality measured in independent transplant experiments. Overall, we find that both methods often better predict transplant performance than climatic or geographic distances. We also find that GF<sub>offset</sub> and RONA models are surprisingly not improved using GEA candidates. Even with promising validation results, variation in model projections to future climates makes it difficult to identify the most maladapted populations using either method. Our work advances understanding of the sensitivity and applicability of these approaches, and we discuss recommendations for their future use.</p>
Dryad Translation missing: fr.blacklight.search.logo
Dryad
Lind, Brandon; Lu, Mengmeng; Obreht Vidakovic, Dragana; Singh, Pooja; Booker, Tom; Aikten, Sally; Yeaman, Sam 2021-07-18 <p>Despite their suitability for studying evolution, many conifer species have large and repetitive giga-genomes (16-31Gbp) that create hurdles to producing high coverage SNP datasets that capture diversity from across the entirety of the genome. Due in part to multiple ancient whole genome duplication events, gene family expansion and subsequent evolution within <i>Pinaceae</i>, false diversity from the misalignment of paralog copies creates further challenges in accurately and reproducibly inferring evolutionary history from sequence data. Here, we leverage the cost-saving benefits of pool-seq and exome-capture to discover SNPs in two conifer species, Douglas-fir (<i>Pseudotsuga menziesii</i> var. <i>menziesii </i>(Mirb.) Franco, <i>Pinaceae</i>) and jack pine (<i>Pinus banksiana</i> Lamb., <i>Pinaceae</i>). We show, using minimal baseline filtering, that allele frequencies estimated from pooled individuals show a strong positive correlation with those estimated by sequencing the same population as individuals (r &gt; 0.948), on par with such comparisons made in model organisms. Further, we highlight the utility of haploid megagametophyte tissue for identifying sites that are likely due to misaligned paralogs. Together with additional minor filtering, we show that it is possible to remove many of the loci with large frequency estimate discrepancies between individual and pooled sequencing approaches, improving the correlation further (r &gt; 0.973). Our work addresses bioinformatic challenges in non-model organisms with large and complex genomes, highlights the use of megagametophyte tissue for the identification of paralog sites, and suggests the combination of pool-seq and exome capture to be robust for further evolutionary hypothesis testing in these systems.</p>

Instructions pour la recherche cartographique

1.Activez le filtre cartographique en cliquant sur le bouton « Limiter à la zone sur la carte ».
2.Déplacez la carte pour afficher la zone qui vous intéresse. Maintenez la touche Maj enfoncée et cliquez pour encadrer une zone spécifique à agrandir sur la carte. Les résultats de la recherche changeront à mesure que vous déplacerez la carte.
3.Pour voir les détails d’un emplacement, vous pouvez cliquer soit sur un élément dans les résultats de recherche, soit sur l’épingle d’un emplacement sur la carte et sur le lien associé au titre.
Remarque : Les groupes servent à donner un aperçu visuel de l’emplacement des données. Puisqu’un maximum de 50 emplacements peut s’afficher sur la carte, il est possible que vous n’obteniez pas un portrait exact du nombre total de résultats de recherche.