Recherche

Résultats de recherche

Dryad Translation missing: fr.blacklight.search.logo
Timerman, David; Barrett, Spencer C.H.; Barrett, Spencer C. H. 2018-12-11 Wind pollination has evolved from insect pollination in numerous angiosperm lineages and is associated with a characteristic syndrome of morphological traits. The traits initiating transitions to wind pollination and the ecological drivers involved are poorly understood. Here, we examine this problem in Thalictrum pubescens, an ambophilous (insect and wind pollination) species that probably represents a transitional state in the evolution of wind pollination in some taxa. We investigated wind-induced pollen release by forced harmonic motion by measuring stamen natural frequency (fn), a key vibration parameter, and its variability among nine populations. We assessed the repeatability of fn over consecutive growing seasons, the effect of this parameter on pollen release in a wind tunnel, and male reproductive success in the field using experimental manipulation of the presence or absence of pollinators. We found significant differences among populations and high repeatability within genotypes in fn. The wind tunnel assay revealed a strong negative correlation between fn and pollen release. Siring success was greatest for plants with lower fn when pollinators were absent; but this advantage diminished when pollinators were present. Our biomechanical analysis of the wind-flower interface has identified fn as a key trait for understanding early stages in the transition from insect to wind pollination.
Dryad Translation missing: fr.blacklight.search.logo
Dryad
Timerman, David; Barrett, Spencer C. H.; Barrett, Spencer C.H. 2019-01-17 1. In clonal dioecious plants, the frequency and spatial distribution of flowering ramets contains information on the underlying genet sex ratio. These measures can also provide insight on potential ecological mechanisms causing variation and bias in sex ratios among populations. 2. We used a novel likelihood-based approach and spatial clustering model to estimate the genet sex ratios from flowering ramet data collected from 32 populations of dioecious Thalictrum pubescens, a clonal species from eastern N. America that occupies moist wetland and forested environments. We investigated sex ratios of seed families, clone size, patterns of flowering and plant height to determine potential causes of sex ratio bias. 3. Flowering ramet sex ratios varied considerably among populations but were significantly male-biased. Seed families grown to flowering also exhibited the same degree of male bias. Both models predicted close correspondence between ramet and genet sex ratios. The likelihood model revealed that gender differences in ramet production could not account for biased sex ratios. The spatial clustering model indicated that ramets were significantly clustered at two spatial scales and estimated similar cluster sizes and densities for both sexes. There was no evidence for spatial segregation of the sexes. Both sexes were equally likely to flower in consecutive years and repeated bouts of flowering had no effect on ramet height. 4. Synthesis. Our analyses suggest that the widespread occurrence of male-biased sex ratios in T. pubescens is unlikely to result from sexual differences in clonal growth or habitat preferences. The bias appears to become established early in the life cycle, perhaps at the seed stage as consequence of local resource competition.

Instructions pour la recherche cartographique

1.Activez le filtre cartographique en cliquant sur le bouton « Limiter à la zone sur la carte ».
2.Déplacez la carte pour afficher la zone qui vous intéresse. Maintenez la touche Maj enfoncée et cliquez pour encadrer une zone spécifique à agrandir sur la carte. Les résultats de la recherche changeront à mesure que vous déplacerez la carte.
3.Pour voir les détails d’un emplacement, vous pouvez cliquer soit sur un élément dans les résultats de recherche, soit sur l’épingle d’un emplacement sur la carte et sur le lien associé au titre.
Remarque : Les groupes servent à donner un aperçu visuel de l’emplacement des données. Puisqu’un maximum de 50 emplacements peut s’afficher sur la carte, il est possible que vous n’obteniez pas un portrait exact du nombre total de résultats de recherche.