Recherche

Résultats de recherche

SFU Research Data (FRDR) Translation missing: fr.blacklight.search.logo
Federated Research Data Repository / dépôt fédéré de données de recherche
Li, Xinru; Zickfeld, Kirsten 2020-08-12 This dataset contains numerical simulations of the University of Victoria Earth System Climate Model version 2.9 (UVic ESCM v2.9) forced by a set of future emission scenarios. We use Representative Concentration Pathway (RCP2.6) and its extension to year 2300 as the reference scenario and design a set of cumulative emissions and temperature overshoot scenarios based on other RCPs. This can be used to investigate to what extent overshoot and subsequent recovery of a given cumulative CO2 emissions level by Carbon Dioxide Removal (CDR) leaves a legacy in the Climate system. For example, we used this dataset to explore the reversibility of marine climate change impacts under CDR. The future numerical simulations were performed using computing resources provided by Westgrid and Compute Canada in 2016.
SFU Research Data (FRDR) Translation missing: fr.blacklight.search.logo
Federated Research Data Repository / dépôt fédéré de données de recherche
Chimuka, V. Rachel; Nzotungicimpaye, Claude-Michel; Zickfeld, Kirsten 2023-05-31 Earth system model data (time series) simulating the land and ocean carbon response in (i) a CDR-reversibility scenario and (ii) a zero emissions scenario. Both scenarios are run in fully coupled, biogeochemically and radiatively coupled modes. Spatial data is also included for the radiatively coupled CDR-reversibility scenario. This data was generated by the University of Victoria's Earth System Climate Model (UVic-ESCM).
SFU Research Data (FRDR) Translation missing: fr.blacklight.search.logo
Federated Research Data Repository / dépôt fédéré de données de recherche
Ehlert, Dana; Zickfeld, Kirsten 2018-03-31 The related study uses a global climate model to explore the extent to which sea level rise due to thermal expansion of the ocean is reversible if the atmospheric concentration of carbon dioxide (CO2) declines. It is found that sea level continues to rise for several decades after atmospheric CO2 starts to decline and does not return to the pre-industrial level for over thousand years after atmospheric CO2 is restored to the pre-industrial concentration. The data presented here is the model output analysed in the study and the model input needed to perform the model simulations.
Zenodo Translation missing: fr.blacklight.search.logo
Zenodo
Mathesius, Sabine; Wright, Nesha; Mengis, Nadine; MacIsaac, Alexander J.; Nzotungicimpaye, Claude-Michel; Keller, David; Giang, Tran; Zickfeld, Kirsten 2024-04-24 Overview This repository contains the input files for the UVic Earth System Climate Model (ESCM) that are required to simulate the historical period (1850-2014) and the extended CMIP6 SSP-RCP scenarios SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, SSP5-3.4, SSP5-8.5 (2015-2500). For simulations of these scenarios, the model is forced with aggregated non-CO2 greenhouse gas radiative forcing, land use cover, aerosol radiative forcing, and either CO2 concentration or CO2 emissions. The radiative forcing of CO2 is calculated internally by the UVic ESCM. The following files are included in this repository: CO2 concentrations  (for concentration-driven simulations) A_co2_hist.nc A_co2_119.nc A_co2_126.nc A_co2_245.nc A_co2_370.nc A_co2_434.nc A_co2_460.nc A_co2_534.nc A_co2_585.nc   CO2 emissions (for emission-driven simulations) F_co2emit_119.nc F_co2emit_126.nc F_co2emit_245.nc F_co2emit_370.nc F_co2emit_434.nc F_co2emit_460.nc F_co2emit_534.nc F_co2emit_585.nc   Land use cover fractions (pasture and crops) L_agricfra_hist_and_ssp119.nc L_agricfra_hist_and_ssp126.nc L_agricfra_hist_and_ssp245.nc L_agricfra_hist_and_ssp370.nc L_agricfra_hist_and_ssp434.nc L_agricfra_hist_and_ssp460.nc L_agricfra_hist_and_ssp534.nc L_agricfra_hist_and_ssp585.nc   Aggregated non-CO2 greenhouse gas forcing A_aggfor_hist.nc A_aggfor_119.nc A_aggfor_126.nc A_aggfor_245.nc A_aggfor_370.nc A_aggfor_434.nc A_aggfor_460.nc A_aggfor_534.nc A_aggfor_585.nc   Aerosol optical depth A_sulphod_hist.nc A_sulphod_119.nc A_sulphod_126.nc A_sulphod_245.nc A_sulphod_370.nc A_sulphod_434.nc A_sulphod_460.nc A_sulphod_534.nc A_sulphod_585.nc   Detailed description 1.  CO2 concentrations The CO2 concentrations are provided here as the annual global mean mole fraction of CO2 in ppm and identical with the CMIP6 input data available at https://esgf-node.llnl.gov/search/input4mips/. 2.  CO2 emissions The CO2 emissions are the same as provided by RCMIP (Meinshausen et al., 2020). Here the Agriculture, Forestry and Other Land Use (AFOLU) emissions are represented as “F_co2eland” emissions. Also, the sector based emissions from Aircraft, the Industrial Sector, International Shipping, Residential Commercial Other, Solvents Production and Application, the Transportation Sector, and Waste are aggregated into the Fossil and Industrial emissions and represented as “F_co2efuel” emissions. Both the F_co2eland and F_co2efuel emissions are finally aggregated into total CO2 emissions represented as “F_co2emit”. These aggregated CO2 emissions are likewise identical to globally averaged CMIP6 input data available at https://esgf-node.llnl.gov/search/input4mips/. All three CO2 emission variables are included in the “F_co2emit*.nc” files. In addition to the SSP-RCP-scenario CO2 emissions also the historical CO2 emissions are included in all files (starting in year 1750). 3.  Land use cover The land-use forcing is provided as the pasture and cropland grid cell fraction (variable names: “L_cropfra” and “L_pastfra”; in file: “L_agricfra.nc”). The UVic ESCM translates pasture and cropland fractions internally into C3 grass or C4 grass fractions, depending on the local conditions. The land-use cover is based on LUH2v2f “states.nc” data (available at https://luh.umd.edu/data.shtml) and has been regridded and reaggregated for the UVic ESCM. The cropland fraction of the UVic ESCM input (“L_cropfra”) is the sum of all crop types given by LUH2v2f (“c3ann”, “c3nfxc”, “c3per”, “c4ann”, “C4per”), whereas the pasture fraction (“L_pastfra”) is the sum of LUH2v2f’s pasture fraction and rangeland fraction (“pastr”, “range”). The land-use forcing covers the period 850-2100. 4.  Non-CO2 greenhouse gas radiative forcing The aggregated radiative forcing of 44 non-CO2 greenhouse gases (GHG) was calculated from the respective atmospheric GHG concentrations (provided by RCMIP for CMIP6, see References), following the approach of Meinshausen et al. 2020 and Etminan et al. 2016. Radiative forcing of tropospheric ozone, stratospheric ozone, and stratospheric water vapor from methane oxidation was calculated as described in Smith et al. 2018. The following non-CO2 GHG are accounted for in the aggregated forcing files (“A_aggfor.nc”): N2O; CH4; CFC11; CFC12; HFC134a; C2F6; C6F14; CF4; HFC23; HFC32; HFC43_10; HFC125; HFC143a; HFC227ea; HFC245fa; SF6; CFC113; CFC114; CFC115; HCFC22; HCFC142B; HCFC141B; HALON1211; HALON1301; HALON2402; CH3BR; CH3CL; CCL4; CH2CL2; CH3CCL3; NF3; HFC365mfc; C3F8; C4F10; HFC236fa; C5F12; CHCL3; cC4F8; HFC152a; SO2F2; C7F16; C8F18; stratospheric and  tropospheric O3; water vapor from CH4 oxidation. 5.  Aerosol radiative forcing Aerosol optical depth (AOD) 2D input data for the UVic ESCM was created using a UVic grid with the scripts and data provided by Stevens et al. (2017). The data provided describes nine different plumes globally which are scaled with time to produce monthly aerosol optical depth forcing for the years 1850-2018 (Stevens et al., 2017). For the future projection of the years 2018-2100, the same scripts were run with input data from Fiedler et al. (2019). To extend aerosol optical depth data from 2100 to 2500, the last year of available data (i.e. 2100) was repeated.  Since the AOD input caused too great a negative forcing in the historical period, a scaling factor was implemented into the UVic ESCM, which allows to scale aerosol forcing from AOD data. The scaling factor was set to 0.7, which gives a globally averaged forcing of -1.03 Wm-2 in 2011. Note that the file "A_sulphod_hist.nc" contains not only the data of the historical period (1850-2014) but also the data of the scenario SSP5-8.5 (extended until 2500).   References Fiedler, S., Stevens, B., Gidden, M., Smith, S. J., Riahi, K., & van Vuuren, D. (2019). First forcing estimates from the future CMIP6 scenarios of anthropogenic aerosol optical properties and an associated Twomey effect. Geoscientific Model Development, 12(3), 989-1007.Etminan, M., Myhre, G., Highwood, E., and Shine, K.: Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, Geophys. Res. Lett., 43, 12614–12623, https://doi.org/10.1002/2016GL071930, 2016. Meinshausen, M., Nicholls, Z. R., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., ... & Wang, R. H. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571-3605. Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar, R. J., Passerello, G. A., & Regayre, L. A. (2018). FAIR v1. 3: a simple emissions-based impulse response and carbon cycle model. Geoscientific Model Development, 11(6), 2273-2297. Stevens, B., Fiedler, S., Kinne, S., Peters, K., Rast, S., Müsse, J., Smith, S. J., and Mauritsen, T.: MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6, Geosci. Model Dev., 10, 433-452, https://doi.org/10.5194/gmd-10-433-2017, 2017 RCMIP GHG concentration data: https://zenodo.org/record/4589756/files/rcmip-concentrations-annual-means-v5-1-0.csv RCMIP Emissions data: https://rcmip-protocols-au.s3-ap-southeast-2.amazonaws.com/v5.1.0/rcmip-emissions-annual-means-v5-1-0.csv Input4mips CO2 concentration data: https://esgf-node.llnl.gov/search/input4mips/ LUH2 land-use cover data: https://luh.umd.edu/data.shtml https://creativecommons.org/licenses/by/4.0/legalcode

Instructions pour la recherche cartographique

1.Activez le filtre cartographique en cliquant sur le bouton « Limiter à la zone sur la carte ».
2.Déplacez la carte pour afficher la zone qui vous intéresse. Maintenez la touche Maj enfoncée et cliquez pour encadrer une zone spécifique à agrandir sur la carte. Les résultats de la recherche changeront à mesure que vous déplacerez la carte.
3.Pour voir les détails d’un emplacement, vous pouvez cliquer soit sur un élément dans les résultats de recherche, soit sur l’épingle d’un emplacement sur la carte et sur le lien associé au titre.
Remarque : Les groupes servent à donner un aperçu visuel de l’emplacement des données. Puisqu’un maximum de 50 emplacements peut s’afficher sur la carte, il est possible que vous n’obteniez pas un portrait exact du nombre total de résultats de recherche.